Název:
Why quintic polynomial equations are not solvable in radicals
Autoři:
Křížek, Michal ; Somer, L. Typ dokumentu: Příspěvky z konference Konference/Akce: Applications of Mathematics 2015, Prague (CZ), 2015-11-18 / 2015-11-21
Rok:
2015
Jazyk:
eng
Abstrakt: We illustrate the main idea of Galois theory, by which roots of a polynomial equation of at least fifth degree with rational coefficients cannot general be expressed bz radicals, i.e., by the operations +, -, ., :, and .... Therefore, higher order polynomial equations are usually solved by approximate methods. They can also be solved algebraically by means of ultraradicals.
Klíčová slova:
finite group; Galois theory; permutation Zdrojový dokument: Applications of Mathematics 2015, ISBN 978-80-85823-65-3
Instituce: Matematický ústav AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: http://hdl.handle.net/11104/0252007