Národní úložiště šedé literatury Nalezeno 20 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Two limited-memory optimization methods with minimum violation of the previous quasi-Newton equations
Vlček, Jan ; Lukšan, Ladislav
Limited-memory variable metric methods based on the well-known BFGS update are widely used for large scale optimization. The block version of the BFGS update, derived by Schnabel (1983), Hu and Storey (1991) and Vlček and Lukšan (2019), satisfies the quasi-Newton equations with all used difference vectors and for quadratic objective functions gives the best improvement of convergence in some sense, but the corresponding direction vectors are not descent directions generally. To guarantee the descent property of direction vectors and simultaneously violate the quasi-Newton equations as little as possible in some sense, two methods based on the block BFGS update are proposed. They can be advantageously combined with methods based on vector corrections for conjugacy (Vlček and Lukšan, 2015). Global convergence of the proposed algorithm is established for convex and sufficiently smooth functions. Numerical experiments demonstrate the efficiency of the new methods.
Plný tet: Stáhnout plný textPDF
A Generalized Limited-Memory BNS Method Based on the Block BFGS Update
Vlček, Jan ; Lukšan, Ladislav
A block version of the BFGS variable metric update formula is investigated. It satisfies the quasi-Newton conditions with all used difference vectors and gives the best improvement of convergence in some sense for quadratic objective functions, but it does not guarantee that the direction vectors are descent for general functions. To overcome this difficulty and utilize the advantageous properties of the block BFGS update, a block version of the limited-memory BNS method for large scale unconstrained optimization is proposed. The algorithm is globally convergent for convex sufficiently smooth functions and our numerical experiments indicate its efficiency.
Modifications of the limited-memory BNS method for better satisfaction of previous quasi-Newton conditions
Vlček, Jan ; Lukšan, Ladislav
Several modifications of the limited-memory variable metric BNS method for large scale un- constrained optimization are proposed, which consist in corrections (derived from the idea of conjugate directions) of the used difference vectors to improve satisfaction of previous quasi-Newton conditions, utilizing information from previous or subsequent iterations. In case of quadratic objective functions, conjugacy of all stored diffrence vectors and satisfaction of quasi-Newton conditions with these vectors is established. There are many possibilities how to realize this approach and although only two methods were implemented and tested, preliminary numerical results are promising.
Plný text: Stáhnout plný textPDF

Národní úložiště šedé literatury : Nalezeno 20 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.