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1 Introduction

In this report we propose a block version of the widely used BNS method, see [1], for
large scale unconstrained optimization

min f(z): x € RY,

where it is assumed that the problem function f : RY — R is differentiable.

The BNS method belongs to the variable metric (VM) or quasi-Newton (QN) line
search iterative methods, see [6], [12]. They start with an initial point xy € RY and
generate iterations z,,; € RY by the process zjy1 = x1, + Sk, 5S¢ = tpdi, k > 0, where
usually the direction vector dy € RY is d, = —Hggr, gr = V.f(x1), with a symmetric
positive definite matrix Hj; and where stepsize t; > 0 is chosen in such a way that

frer1 — fr < ertrgl di, Gl dr. > eagl dy, k>0 (1.1)

(the Wolfe line search conditions, see e.g. [15]), where 0<e; <1/2, g1 <es < 1, fr=f(z1);
typically Hj is a multiple of I and Hj,; is obtained from Hj; by a VM update to satisfy
the QN condition (secant equation)

Hk+1yk = Sk (12)
(see [6], [12]), where yx, = gr41 — gk, k > 0. For k > 0 we denote
Bk = Hk_la bk - Sgyh

(note that by > 0 for gx # 0 by (1.1)). To simplify the notation we frequently omit index
k and replace index k + 1 by symbol + and index k£ — 1 by symbol —.

Among VM methods, the BFGS method, see [6], [12], [15], belongs to the most effi-
cient; the update formula preserves positive definite VM matrices and can be written in
the following quasi-product form

Hy = (1/b)ss" + (I = (1/b)sy” ) H (I - (1/b)ys"). (1.3)
The BFGS method can be easily modified for large-scale optimization; the BNS and
L-BFGS (see [8], [14], [9] - subroutine PLIS) methods represent its well-known limited-
memory adaptations. In every iteration we recurrently update matrix (I, ¢, > 0, (with-
out forming an approximation of the inverse Hessian matrix explicitly) by the BFGS
method, using m couples of vectors (Sk—_m, Yk—m), - - -, (Sk, Yr) successively, where

m=min(k,m—1), m=m+1, k>0 (1.4)

and m>1 is a given parameter. In case of the BNS method, matrix H, can be expressed
either in the form, see [1],

U-T(D+¢YTY) U=t —U-T ][ §T
H+ = CI+ [Sv CY:| [ _U—l 0 CYT )
where Sk =[Sk, - Sk, Yi = [Uk—ms - - - Ukl, D =diag[br—m, .-, bl, (Ur)ij = (¢ Ya)ij
for i <j, (Uy)i; =0 otherwise (an upper triangular matrix), k>0, or in the form, also
given in [1]

Hy = SUDUST + (1 - SU~Y") (1 -vU'sT), (1.5)

thus direction vector can be calculated efficiently without computing of H,, see [1].
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For STY nonsingular and any H € RN the BFGS update formula (1.3) can be
easily generalized to the following block version

H, =S(S™Y) ST + PTHPg, Ps=I-Y(STY) 57, (1.6)

which satisfies the QN conditions H,Y =S, i.e. for the whole block of stored difference
vectors. This generalization of the BFGS update of H was derived by Schnabel [16] for
STY and H symmetric positive definite, using a variational approach, and by Hu and
Storey [7] for quadratic functions, using corrections for the exact line search. Both in [16]
and in [7], some modifications of matrices Y (and also S in [7]) are proposed with intent
to replace STY by a symmetric positive definite matrix. Note that these modifications
disturb the QN conditions from previous iterations.

Formula (1.6) is not directly applicable to general functions, since it does not guar-
antee that the corresponding direction vectors are descent. To overcome this difficulty
and at the same time utilize the advantageous properties of the block BFGS update in
limited-memory context, in each iteration we determine n > 1 and split matrices S and
Y in such a way that S = [Spy,..., k), Y = Y}, .., Yiny], where all blocks S[:,f]Y[i] are
positive definite, i.e. matrices Sﬁ Y+ YﬁSM are symmetric positive definite, i=1,... n.
Afterwards we replace the BNS formula (1.5) by n successive updates of an initial VM
matrix Hy ((I for the BNS method (1.5)) using a modification of the block BEFGS update
(1.6) with matrices Sy, Y, ¢ =1,...,n, instead of S,Y (the block BNS method, see
Section 4). Obviously, for n = m we obtain the BNS method. The question how to form
suitable blocks S}, Y}; will be discussed in Section 5. Numerical results indicate that this
approach can improve results significantly compared to the BNS and L-BFGS method.

In spite of the fact that matrix H, is unsymmetric generally, we use the conventional
direction vector dy = —H g, such that z* = z, 4+ d, solves the problem g(z*) = 0,
9(z)=g4++H ' (z — z4) (a linear model for gradients which respects the QN conditions);
for ill-conditioned problems we usually obtained better results than e.g. with vector d; =
—(1/2)(H +HT)g,, which minimizes the quadratic function Q(d)= d*(H4+HT) 'd+gld.

In Section 2 we derive the block BFGS update for general functions, present its
properties and modifications and show some similarities to the corrected BFGS update,
see [18] and [17]. In Section 3 we focus on quadratic functions and show optimality of the
block BFGS method and a role of unit stepsizes. In Section 4 we investigate the block
BNS method and derive a convenient formula similar to (1.5) to represent the resultant
VM matrix and a related formula for efficient calculation of the direction vector. The
corresponding algorithm is described in Section 5. Global convergence of the algorithm
is established in Section 6 and numerical results are reported in Section 7.

We will denote by || - || p the Frobenius matrix norm, by || - || the spectral matrix norm,
by | - | the size of both scalars and vectors (the Euclidean vector norm) and by [A]}? the
principal submatrix of A with both row and column indices of entries from n; to ns.

2 The block BFGS update

Using a variational approach, we will derive the block BFGS update (1.6) with H =
(1/2)(H + HT) for general functions, investigate its generalized form and show some
connections with methods based on vector corrections.



2.1 Derivation and basic properties

To derive the basic variant of the block BFGS update, given by Theorem 2.2, we utilize
Theorem 2.1, which is a block version (with S, Y instead of s,y) of Corollary 2.3 in [3].

Lemma 2.1. Suppose that matriz J € R™N*™ has a full rank, u€ R™ and z*=J(J1J)™?
Then z* is the unique solution to mingegn |z| s.t. Jlx = u.

Proof. Obviously Jz* = u. Let 2’ = 2* +v and J'2’= u for some v € RY. Then
JT =0, thus |2']* = T (JTJ)"'u + |v|?, which yields the desired conclusion. O

Theorem 2.1. Let S,Y € RYN*™, A W, , Wg € RN, W, Wg nonsingular and let
matrix Y have a full rank. Then the unique solution to

: —1 N -1 _
) L W Ay — AWRY P st. AyY =8 (2.1)
Ay = APy + SVIY) VT V = WEWRY, Py=1-YVY)'Vvl (2.2)

Proof. We denote Q = W, (Ay — A)W;! 2 [wr,...,wy]T and J = WRY. Since
JTOT = (QWRY)T (ANY — AY)TW, T, problem (2.1) can be rewritten

min wil? st. JTQT = (8 — AV)TW; T,
Z! | .

wZE'RN
Denoting [uy,...,uy] = (S - AY)TWL_T, this can be broken up into N disjoint problems
min_|w;|? st Jwi=w;, i=1,...,N.
w;ERN

Using Lemma 2.1 (J has obviously full rank), we get Q7= J(J7J)"(S—AY)TW; T
W Ay — AWRY = Q = W NS — AY)(JTT) It
Ay — A = (S — AY)(JTI) LT W,
which gives (2.2) by JTWg = VT and J7J = VTY. O
Since matrix Ay is meant as an approximation of the inverse Hessian matrix, thus
near to a symmetric matrix, and since the nearest symmetric matrix to any matrix M in
Frobenius norm is (M+M7") by Lemma 2.2, which is Lemma4.1 in [3], we will construct

matrix A* satisfying A*Y = S nearest to the subspace of symmetric matrices in RY*¥,
Following the approach used in [3], we will find lim; ., A;, where in view of Theorem 2.1

Ay = APy +S(VIY) "W A= (1/2)(Ai+ APy + S(VIY)" VT i =0,1,... (2.3)

Lemma 2.2. Let M € R"*N. Then matriz Mg= %(M—FMT) is the unique solution to

i Mg — M t. Mg= ML,
pin NMs = Mlle s s = Mg

Theorem 2.2. Let the assumptions of Theorem 2.1 be satisfied and sequence {A;}2, be
defined by (2.3). Then

lim 4; = (1/2)PL(A+AT)Py + V(VTY) TST Py + S(VTY) VT & 4%, (2.4)

Moreover, if T'€ R™™ is nonsingular and V= ST, we obtain the block BFGS update
(1.6) with H, = A*, H = (1/2)(A+AT).



Proof. First we prove
Ai=(1/2"7Z + A*, Z=VVIY) (ATY-9)"Py, (2.5)
i=1,2,..., by induction. For i=1 it is true, since from (2.3) we get
A —S(VTY) T = L(Ag+AT) Py = L(APy+ PTAT+V(VTY)TST) Py
= L(I-PL)APy + LPE(A+AT)Py + JV(VTY) TSTP,
= SV(VIY)H(ATY=S)TPy+V (VTY ) TSP, + L PL(A+ AT) Py,
by VT Py =0, P2 = Py and I—PY = V(VTY)TYT,
Suppose that (2.5) is true for some i > 1. By VP, = 0 and P2 = Py we obtain
1
(AP, = §PVT (A+ APy +V(VIY) ISP, = A*—S(VIY) 'V = A* Py,
and ZPy = Z, Z'Py = 0, which by (2.3) and (2.5) yields

1
2
1
2

1 1
Aia =3 (At AT P+ SV WV im gy 2 (A= SO7Y) VD4 S(0Y) 7V

i.e. (2.5) is true for i+1, which completes the induction. Consequently, this implies (2.4).
Finally, let V = ST. Then P, = I — Y/(TTSTY)'TTST = [ — Y(STY)~1ST = Ps,
STPy =0 and A*= JPI(A+ AT)Ps+ S(STY) ST, O
In the sequel, we give some properties of the block BFGS update, similar to the well-
known properties of the standard BFGS update. We will investigate the generalized form
of (1.6)
H,=8(s"y C)7'" + (1= S(S"™Y)"Y") B (I -y (S"Y)"'s") . (26)

where we consider any nonsingular matrices H € RY*N and STY,C € R™ ™. First we
prove the following lemmas.

Lemma 2.3. Let W; € R, u>0,v>0,i=1,...,4, and WiW3=1. Then
det (1 +WaWy — WsWJ') = det (W, W3) . det (W]'1W73). (2.7)
Proof. Denoting « = det (I + WiWi — W3W4T), we can write

I wf o 1 wi 0 1 wil 0
Wy I Wi |=|0 I+WWS Wi |=|0 [+WWS-W;W} W;|=a.
o wlf I 0 Wil I 0 0 1
The initial determinant on the left can be rewritten in another way
1 wil 0 1 wl o 1 Wi —wWIws
a=| =W I Wiy =| =W I Wsi=| -W; 1 0
wWiw, 0 I-W[IW; wWiw, 0 0 wWIw, 0 0
by W/IWj3 = I. To obtain the desired result, we interchange the third block column of
the last determinant, multiplied by —1, and the first block column. O

Lemma 2.4. Let matriz A € RY*YN be positive definite. Then A is nonsingular and
matriz A~ is also positive definite.

Proof. Obviously, A is nonsingular. Let ¢ € RY, ¢ # 0, p = A~'q. Then ¢7A~1q =
pAlp = pTAp > 0. O



Theorem 2.3. Let matrices STY and C  be nonsingular and let matriz H, be given
by (2.6). Then H,Y = SC~! and
(a) if we replace matrices S,Y in (2.6) by STs, YTy with Ts, Ty € R™*™ nonsingular,
then the corresponding matriz Hy can be also written in the form (2.6) with C
replaced by Ty CTg"',
(b) for H,H; and STBS nonsingular and B = H™', matriz B, = H;' is given by

B, =B - BS(S"BS)'STB+YC(STY) YT, (2.8)
(c) for H,H, and STBS nonsingular, the determinant of B, is
det B = det B .det(STY C)/ det(STBS). (2.9)

(d) for H and STY C positive definite, also matriz H., is positive definite.
Proof. (a) We simply replace S,Y by STs, YTy in (2.6) and rewrite the relation.
(b) Denoting B, = B — BS(STBS)*'STB +YC(S'Y)TYT, we have B, S = YC,
thus we get from (2.6)
B\ H, = YC(STY C)'ST+ (B, - YC(STY)""YT) H (I - Y(STY)'S7)
= Y(STY) ST + (I — BS(STBS)"LST) (I - Y(STY)~1ST)
I — BS(STBS)tST + BS(STBS) 15Ty (STY)~1sT = I.
(c) Using (2.8) and Lemma 2.3 with W; = HYC, W] = (STY)"TYyT, W3 =
S(STBS)™', Wl = STB, we get
det B = det B.det (I — S(STBS)'S"B + HY C(STY) TYT)
= det B.det (I-WsW]+W,W]) = det B.det((STBS) ). det(STY C).
(d) Let ¢ € RN, ¢ # 0. If STqg # 0, then ¢"H q > ¢"S(STY 0)~'STq > 0 by
Lemma 2.4, otherwise ¢"H,q = q"Hq > 0. O

Corollary 2.1. Let matrices STY and H be nonsingular, H symmetric, B=H"', and
let matrices H, given by (2.6) with C=1 (i.e. by (1.6)) and STBS be nonsingular. Then
1 1

(;(m + HI)) — B BS(S"BS) 'S"B+ Y(l(STY+ YTS))_lYT, (2.10)

;(B++B§f) = B- BS(S"BS) ST + 1Y((STY) +(YT) YT (2.11)

det<;(H++HI)>1: det B. det< ((5™Y) "+ (v7s)- )> / det(STBS),  (2.12)
det;(B++B£) = det B.det = (STY+ Y'S)/ det(S"BS). (2.13)

Proof. From (1.6) we obtain 3 (H,+ HT)=1S((SY) '+ (Y7S)™)ST+ PZ H Ps, which
can be written in the form (2. 6) with C'= (5(I+(Y"S)"15%Y))~" and H. replaced by
s(Hy +HT). Using Theorem 2.3(b)—(c), we get (2.10)—(2.12). Since (2 11) can be
written in the form (2.8) with C'= (/4 (S7Y)~'YS) and B replaced by 3(By+BY),
Theorem 2.3 (c) yields (2.13). O

2.2 Connections with methods based on vector corrections

The following lemma shows some relations between the block BFGS update in the form
(2.6) and the repeated BFGS update with modified difference vectors.



V2

Lemma 2.5. Let S 2 [S,s], Y matrices ST, Ts, Ty € R™™ be nonsingular,
C=TyTs', P=1-V(57Y)"'87,

yl,
PT =Py, b=5T7#0 and matriz H, be given by

H, = (1/b) 35"+ PTHP, P=1—(1/b)3y5", H=8(STYC)'ST+ PTHP. (2.14)
Then matriz H, can be written in the form (2.6) with C =TyTg", where

Y,

P (&TyN\-TyT f_(&Ty\—13T
TS _ TS (STY1> Yis 7 TY _ [ Ty (STYl) S Yy (2'15)
(the upper block triangular matrices), and STB,5 = STH-"s = 0 holds. Moreover, if

matrices H and S™Y C are symmetric, then also H, H, and STYC are symmetric.

Proof. Setting S:ST@YZV}V/TYJ we obtain S=[58Ts,s—S(S™Y) TYTs|=[STs, P ] =
(ST, 5] and similarly Y =[Y Ty, Py|=[YTy,y], which yields
TESTYTy TES"Py TES™Y Ty 0
sTPY Ty b 0 b

by PTS = PY = 0. Using (2.16), we get

O ~ L v o~ ~ NI - 1

S(STY) 18T = S(STYC)™ 1ST+b~~T Y(STY) 1St =y (STy) s ggjéT. (2.17)
From (2.14) we obtain successively

= (1/b) 557 + PTHP = (1/b) 35"+ PTS(STY C)~*8"P+ PTPT.

= (1/b)55"+S(STY C) 'S (1 (1/b)5§" ) PTHP (1—(1/b)j5"
= (1/b)357+S(STY 0)*1ST+( —(1/b)sg" PT)H (P—(1/b)Py3")
— S8V ) 1ST+b§§T+ <1—S(STY)—TYT— )

STy =

(2.16)

by P2=P and PTS=0, which yields PTS=S—(1/b)3
H, =8(S"V) 8"+ (1-8(5") "Y' H (1 Y(§'Y)'S"), (2.18)

which can be written in the form (2.6) with CTTYVTS by Theorem 2.3 (a). )
 Since Hyg=35and HY =SC', ie. S=HYC by (2.14), we have S"B, 5= 5"y =

$TPy=0and STH-T5 = CTYT5 = CTYTPTs = 0 by PTS = PY =0.
If matrices /' and S*Y C' are symmetric, then also matrices H and T3 S™YTy are
symmetric by (2.14) and T4 S"Y Ty =T¢ (S™Y C)T’s holds, which yields the symmetry of
matrices Hy, STY and STY C by (2.14), (2.16) and equality STY C=T5*(STY)Tg'. O

§TPTS=S. Using (2.17), we have

In view of relations S”B,§ = STH-T5 =0, we can regard transformations s — § =
PTs =5 —S(STY)"'Y7Ts, y — § = Py =y—Y(STY)"'S7y (or transformations S — S,
Y— }7) in Lemma 2.5 as corrections from previous iterations for conjugacy, which shows
some connections with methods [18] and [17], where similar corrections are also used.

Although variational characterizations of such corrections are significant mainly for
quadratic functions, see Section 3, the following theorem indicates that we can expect
good properties of the block BFGS update also for functions similar to quadratic.

Theorem 2.4. LetS—[ s],Yé[,].,_S: +~S j=y+Yo, c€R" m>1,
§=Pls, §=Py, P=1 .Y(S~ ) LT b = 51, b = 3" and matriz SY be symmet-
ric positzve definite. Then b > b = >0 for any € R™. Moreover, let H be any

(=}



nonsingular matriz satisfying HY =S and a=4"Hij, a=y"Hy. If we define matriz H, by
H, = (1/57) 857+ (I1-(1/5"5) 55" ) H (1 (1/5"5) ii5") (2.19)

and if a symmetric positive definite matriz G satisfying GS =Y is given, then within
o ER™ we have G5 =4}, 4 > a and

IGYV2H G2 =I5 = (1 =/ 0)* =2 | GV2(5 —H) [/ b+ |GV2HGY =135 (2.20)

this value is minimized by the choice § = 3, §j = y; for this choice and H given by (2.14)
(with C=1), matrices H, and H, given by (1.6) are identical.

Proof. From § = PTs and § = Py we obtain b = s7j by P2 = P, which gives

b=0b—s"Y(STY) STy, (2.21)
From § = s+ So and §j = y + Yo we get b = b+ 2y"So + 0257V o, which can be written
b=b—y"S(SY) 'Sy + (o + (STY)—léTy)TSTY(U +(STY)18Ty). (2.22)

Since matrices STV, STV are symmetric positive definite by assumption, we have b>0
by Theorem 2.22 in [5] and STy = Y7s. Comparing (2.22) and (2.21), we can see that
always b > b holds.

Let GS = Y with G symmetric positive definite. Then obviously G = §j and G5 = 7.
Denoting w= G235, w= G'/?5, W= GY?HG?, W, =G"?H,G"? and M= I—-W, we
have |w|?=b> b= |w|? > 0 and (2.19) can be written in the form

W, = (1/|w*)ww” + PWP=1—-PMP, P=1—(1/|w?*)ww’, (2.23)

by G§ = ij and P? = P. In view of the fact that the trace of a product of two square
matrices is independent of the order of the multiplication, from (2.23) we obtain

2
1T =W} = |PMP|} = Tr(PMPM) = Tr([M—(1/|w|*)ww™™]")
= ||M|3% - Tr(waM2+MwaM— {wTMw/|w|2} waM)/|w|2 (2.24)
= M|} - 2[Mw]?/|w|* + (w"Mw)?/|w|*,

e. (2.20) by Mw = G'/2(5— Hjj) and w"Mw = b—i. In view of HY = S by assumption
and in view of s7Y =4S by symmetry of STY, values |Mw| and w”Mw are independent
of o, as we can see from

§—Hj = s+So—Hy—HYo=s— Hy,
b—i = (5—Hi)5j= (s —Hy)(y+Yo) = sTy —y"Hy + s"Yo — y"HYo .
In view of (2.24) we can write ||[I — W, ||% = o(|w|?/|w|?), where function
(&) = (@' Mw)*/|0]* — 2&|Mw|*/|@]* + || M][7 (2.25)

is nonincreasing on [0, 1], since ¢'(£)/2 = &(wTMw)?/|w|* — |Mw|*/]w]* < 0 for £ € [0, 1]
by the Schwarz inequality. Therefore value ||/ — W, ||% is minimized by the choice § = 3,
i = g, which gives |w| = |@|, i.e. maximizes |@|/|w]. For this choice and matrix H given
by (2.14) with C' = I, matrices H, and H, given by (1.6) are identical by Lemma 2.5,
where for C'= I and STY symmetric we have Tg = Ty, thus C' = I.

The rest follows immediately from & = (@ — b) +b = (a —b) + b > (@ — b) + b. O



Seemingly, in accordance with Theorem 2.4, the block BFGS update should be ad-
vantageous in case that matrix STY is positive definite and near to symmetric (e.g. near
to a local minimum). Paradoxically, the standard BFGS update often gives better results
if STY is almost symmetric and the Hessian matrix is ill-conditioned. Therefore we will
use, in addition to the block BFGS update, which for STY symmetric corresponds to
update (2.19) of H with

=3 Q=7 (2.26)
by Lemma 2.5, also the standard BFGS update of H, i.e. (2.19) with
§=s, =1, (2.27)
or a special update of H, i.e. (2.19) with
§=s—(sy_/b)s.,  G=y—(y's /by, (2.28)

which can be more robust than the block BFGS update. In Section 4 we show how it can
be used within the block BNS method. The question how to choose a suitable update
will be discussed in Section 5. For functions similar to quadratic, the choice (2.28) can
also be characterized variationally:

Theorem 2.5. Let S = [s_,s], ¥ = ly—yl, s =s—(sTy_/b_)s_, §=y—(y"s_/b_)y_,
§=s—as_, j=y—ay_, a€R, b=357 7, b=25%j. Then b=s", y; if matriz STY is symmetric
positive deﬁmte then b>b>0 for any a € R. Moreover, let H be any nonsingular matriz
satisfying HY = S and & = §THy. If we define matriz H+ by (2.19) and a symmetric
positive definite matriz G satisfying GS =Y is given, then within o€ R relations G§=1
and (2.20) hold. Besides, values i and (220) are minimized by the choice §= 3§, ij = 7.
Proof. We have §g)—s@—(sy /b ) Tly—(sT y/b-)y-] = 5T, If matrix STY is
symmetrlc positive definite, then sTy_=y%_, value b = b — 2asTy_ + a?b_ is minimized
by a = sTy_/b_, i.e. by = 3, jj = § and the minimum value is b=s T =b—sty_sTy/b_
with b > 0 by Theorem 2.22 in [5].

Let GS = Y with G symmetric positive definite. Setting o = 0,...,0,—a)T and
replacing § by &, § by 9, b by band @ by §7H{, we can proceed in the same way as in the
proof of Theorem 2.4. a

3 Results for quadratic functions

In this section we suppose that f is a quadratic function with a symmetric positive definite
Hessian G (thus GS =Y and matrix STY = STGS is symmetric) and show optimality of
the block BFGS method and a role of unit stepsizes, which are very frequent, not only
for quadratic functions. Here we consider only the G -conjugacy of vectors.

The following theorem shows that the block BFGS update gives the best improvement
of convergence in some sense for linearly independent direction vectors.

Theorem 3.1. Let f be quadratic function f(x) = (a: 2)IG(x—17), T € RN, with a
symmetric positive definite matriz G, the columns of matrixz S be linearly independent
andletS—[sk s - i) Vi = [y m,...,yl] P=1— Y(STY) 18T i=k—m,... k,

_sz—i—SZ 10i-1, U= yz—kY 101, 0i_1 ERITH ~'_P7;18“ Ui = P, Wi, i=k— m—i—l,...,k,
Sk—in = Sk—m = Sk—in, Uk—rn = Yk—in = Yk—rn- Then matrices S,L»TY; are symmetric positive



definite and §j; > 559, >0, i=k—nm,..., k. Moreover, if matriz H is symmetric posi-
tive definite and if we define matrixz H by (1.6) and matriz H, = Hk+1 by H,_n=H and

Hipn = (1805 887 + (1= (875:) 8ail ) i (1— (/37 35:) 337 ). (3.1)
i=k—m,...,k, then value |GY*HG"*~I||p is minimized and matrices H, and H, are
identical and symmetric positive definite for the choice $;=35;, J;=vy;, i=k—m+1,... k.

Proof. Since the columns of S are linearly independent, matrices STY = STGS’“ 1=
k—m, ...k, are symmetric positive definite and we can set H; 1 =S, (STY) 1ST+ PTHP,
i=k—m, ..., k. Using successwely Theorem 2.4 with G = G and SZ, Y;, HZ, H@+1 instead
of S, Y, H H+, i=k—m+1,... k, we get that values |G'/2H; 1 G'/?~I||p are minimized
and matrices H;,; and HZ+1 are identical and symmetric positive definite for the choice

$=38;, J=1;, i=k—m+1,. k’whenHkH Hk+1 H, . O

In Section 2 we mentioned the similarity to the methods based on corrections from
previous iterations for conjugacy. The following theorem, similar to Theorem 3.3 in [18],
shows that in two successive iterations with VM matrices H, H, obtained by the block
BFGS updates, the only unit stepsize is sufficient to have all stored direction vectors from
previous iterations conjugate with vector s, .

Theorem 3.2. Let [ be a quadratic functz’on f(z)

symmetric positive definite matriz G, S 2 S, s|, Y = [Y,yl, H, Hy be symmetric positive
definite matrices satzsfymg HY =S, H,Y=S,d=—Hg, di=—H,g, and let t=1, i.e.
s=d. Then STy Ts,=0, i.e. all columns of S are conjugate with vector s. .

sz —2)'G(x —z), ze RN, with a

|||> ||

Proof. In view of STy= STGs=Y"s we obtain
YT, =-58"B,d, =STg, =Sy +9)=Y"s+ STy =Y"(s+ Hg) =0,
which immediately gives Y%, = STGs, = STy, = 0. O

Vectors STy, Y s, from the preceding iteration are used for functions near to quadratic
in the process of the suitable update formula selection, see Section 5.

4 The block BNS method

In this section we will derive some representations of matrix H, which generalize the
BNS formula (1 5). For this purpose, we split matrices S,Y in such a way that S =
[Sups 5 Sl Y= [Yys -+, Y], n > 1, with all blocks Sf; Y}y positive definite (Sf;Yj +
[z]S[z] symmetrlc positive definite), =1, ..., n, and use the theory in Section 2 for matri-
ces S|, Y} instead of S, Y. We consider arbitrary nonsingular matrices Hy, Cj;, although
only the choice Hy=(I, (>0, Cjy=1I,i=1,...,n, is used in our numerical experiments.
To construct matrix H., in View of Theorem 2.2 we set Hyyy=Hj, Hy = Hp, ), where

Higy1= S5 (S Y Cr) ™' Spy + 5 Pz](HerH[?])P[z‘], Py=1-Yy(SiYu ~'Sf,  (4.1)



for SaYm Clj nonsingular, ¢ = 1,...,n. Note that matrices Hp;), i=1,...,n+1, have only
a theoretical significance and are not formed explicitly and that here we denote by U; a
different matrix than in Section 1.

In the process of splitting matrices S,Y, we start with matrices Sp,), Y}, to have
maximum of the latest QN conditions satisfied. Thus to test positive definiteness of
blocks SQYM, 1 =mn,...,1, we use a factorization arranged in reverse order compared
to the usual LU factorization, see the following lemma, which converts the problem of
factorization to the same problem of a smaller dimension, and Section 5 for details.

Lemma 4.1. Suppose that A, R, L € R*** 1>0, u,v € R*, a€R, a#0,
- A u - R u - L
A R L R R

v« a
Then to get A=RL, it suffices to find R, L satisfying A — (1/a)uv’=RL. Moreover,
(a) if u = v then matriz A is symmetric positive definite if and only if both o > 0
and matriz A — (1/a)uv® is symmetric positive definite,
(b) if matriz A is positive definite, then a>0 and A—(1/a)uv? is positive definite.
Further, if det[[l]é‘“% 0,i=1,...,u+1, then we can continue in this way repeatedly, i.e.
the whole factorization process is well defined, and the result factorization is unique.

Proof. Let A — (1/a)uv’= RL. Using relations for R, L in (4.2), we obtain
RL + (1/a)uv”
T

(% «

RL = =A.

Using Theorem 2.22 in [5], we get (a). Let matrix A be positive definite. Then also A~}
is positive definite by Lemma 2.4, obviously together with all its principal submatrices.
Similarly we deduce that a > 0 (principal submatrix of A). Since matrix A — (1/a)uv”
(Schur complement of entry « in A) is the inverse of a principal submatrix of A~! by
Theorem 1.23 in [5], it is positive definite by Lemma 2.4. Finally, the existence and
uniqueness of the factorization under the conditions above follows from Theorem 1.24 in
5], considering the rows and columns of matrices A, R, L arranged in reverse order. O

The following lemma generalizes the approach used in the proof of Theorem 2.2 in [1].

Lemma 4.2. Let w, v > 0, SLJ YLE RNXM, SR,YR S RNXV, SC:[SL,SR], YCI[YL,YR],
Up,E;, € RMH, Cr e RV, Hr € RN Uy, SEYR and Cr nonsingular,

Hp = S U;TEUSNST + (1 — S U YY) H (T — Y ULPST) (4.3)
Ho = Sgr(SEYrCORr)™'SE+ PYHLPr, Pr=1-Yg(SEYR)'SE. (4.4)
Then matriz Ho can be written in the form
He = ScUSTEcUGSE + (I — ScUZTYIVH (I — YoUS'SE), (4.5)
where .
Uy = ., EBo= _ 4.6
¢ [ S};YR] ¢ YISrCR! ] (4.6)

(matriz Uc is upper block triangular, Ec block diagonal).
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Proof. From (4.3)—(4.4) we obtain
Hp = Sp(SLYR Cr)'SE + PLS U TEL U ST P+ KTH K, (4.7)

where
K = (I-YU'SE)(1-Yr(SkYr) ™ Sk)
= [ =Y U'S] — Yr(SRYR) 'Sk + YLU, 'S YR(SEYR) ' Sh
_ Up' —UL'STYR(SRYR) '] ST ] _ —1QT
Using this representation of Ugs', we obtain [I 0|U;' = [U; ', —U;'STYR(SEYR) ™Y,
theref
O eI Py = U ST — U ST YR(SEYR)USE = [ 0]US'SE (4.8)
by (4.7). Similarly [0 T]U5" = [0, (SEYR) Y], i.e. (SEYR)™1SE =10 IU;'SE, thus
SR(S}%YR CR)_IS]%: = Sg (S}%YR) TY]{SRCR (S;I%YR) IS}%
= Sc U0 INTYESRCR [0 T)UZ'SE (4.9)
—7|0 _ ’
To get (4.5), it suffices to use (4.6) —(4.9) together with K = I—Yo U5'SE. O

The following theorem describes a basic version of the block BNS method.

Theorem 4.1. Let S = [S[l], ce ,S[n]], Y = [Yv[l], ce ,Y'[n]], n > 1, «SZ = [S[l], cee ,Sm],
Yi= Y, -, Y, matrices S[TZ-F]Y[i] Cp) be nonsingular, matrices Hpq) be given by (4.1),
t=1,...,n, and Hy = Hy. Then

1
iy = SUTTEUTS! + 5 (1=8U"Y]) (Hi+HF) (1 -2U7'8F),  (4.10)
where (the upper block triangular matriz)
Sw¥w - ShYen  ShYa
U, = - : : , 4.11
55_1]3/[1'—1] S[f—uy[i] ( )
SELYy
1 1 [i]
B = diag [(21+21T), o 7(22-_1+21T,1), 22} ey (4.12)
ij=1,....n. ‘-2 2

Proof. We will proceed by induction on ¢. For i = 1, update (4.1) can be written
Higp=5p) (Sl]y[l) X [1]5 ]Ou )(SE]YU )_ISE}+;P{1T]<HI+HIT)]D[1] )
e. (4.10) with U; = S Ym E = [115[1 01] =>.
Suppose that (4.10) (4.12) hold for some i <n and set Hy1) = 5(Hjiq) + H[ZT‘+1]) and
Hiiy21= S50y (S Viirn) Chien) ™ Sy + Pl Pl (4.13)
in view of (4.1). Since Hj;11) can be written in the form (4.10) with E; replaced by E; =
(E + El), we can use Lemma 4.2 with S, = S;, Y, = Vi, Sg = Spi1], Yr = Yjiy1), Cr =
C[H-l]; Sce=S8i11,Ye =V, U=U;, Er, = El, H]—*(H]-i-HI ) HL—H[H—I], Ho= H[Z+2}
Denoting F;,, = diag {EZ , EZ-H}, we obtain (4.10) with Hy,q), S;, Vi, Us, E; replaced by
Hiiva), Siv1, Vi1, Uir1, Eiqq and the induction is established with ¢+1 replacing 1. O

Similar representations of H, can be derived also for update (2.19) with the choice
(2.28), which we sometimes use instead of the last update (4.1), see Section 5.

11



Corollary 4.1. Let H[l]:H], nZl, SZ[S[”,...,S[n]]é[S, S], Y:[)/'[l]",_7}/[n]]é[}77y]’

A v . . T
S[n] = [S[n]> ]; [n] — [Yv[n}a y]; S=S—Qas_, y:y_ﬁy—: aZSTy_/b_f ﬁv:yTS—/b—7 STy#O}
S =18,8, Y=[VY,)], matrices SHYi Cuy i =1,...,n—1, S{VCly be nonsingular,
matrices Hy), i=2,...,n, be given by update (4.1) and matriz H, by
Hy = (1/8"9) 58"+ (I-(1/8"9) 39" ) H (I (1/3"5) 9"), (4.14)

s (aT A4 \lxp 1 .
H=5u(S5¥iCion) St 5 P Mo +-Hig) Pty Py =1~ Yiul(S5i ) L
Then

—~

4.15)
Hy = SUTEUST + 11— SUTYT)(H, + H ) (I -YU'S") (416
= SUTTEUT'S" + §(1 = SUTYT)(H, + H] ) (I -YU'S"),  (4.17)

where
- UST“ . |E - U STy = | B pw
ngl] S[T”Y[n,u SE[]Y[n] T(Z1+2))
7= o 4.19
S[nl [n—1] S[nl ’ %(Enfl—i_zz—l)v ( )
St Y[n] n

n]
(matrices U,U are upper block triangular, E,E block diagonal), %; MS ]C[Z] _
1,...,n—1, Sn:Y;C}S[n}CV'[;} Lul=s Yn} is the last row of U, o7 the last row of E, @

the last column of E and k= (32 ’I{m,1+s y. If Cn = [ then w = u, v is the last column
of diag [S{Y(, - -5 St Yin-1s Sy Y] and k= b—i—ﬂ(ﬁ —a)b_.

Proof. We have 37j = s’ by Theorem 2.5. Using Theorem 4.1 for updates (4.1),
i=1,...,n—1 (lLe. for updates (4.1), i=1,...,n, with S}, Y}, replaced by Sinys Yy or
with S =3S,,Y =), replaced by S Y), followed by (4.15), we get
H=S8SUTEU'S"+ ( [-SU"Y") (Hy+HT) (I—YU‘IST) (4.20)
and to prove (4.16), it suffices to use Lemma 4.2 for update (4.14) of H,ie. with Sp=35,
YL:Y,SR— YR—y,OR—l SC'—S Yc—Y UL—U EL—E H] (H[—l—HT)
HL:F[,HC_H+. A A
Since we can write S=[5,s—as_|=8Tg, Y =[Y,y—pPy_|=Y Ty, where
. 1 - mxXm . 1 — ] mxXm
Tszdlag[f,{o f‘” e R, Ty:dlag{f,{o fJ e R™™ (421)
(4.16) yields (4.17) with U = TgTUTy !, E = Ty TETy . After rearrangement we obtain

U = TngU Sjy] {[1 3 :[[é 1 [U 65Ty+STg}':[U ST]’
518

STQ T T
_— r E I 1 B I 1
bE=1 l 575 =1 51l | sm] = |sor o tsty

sy
by 8S8Ty_+ 5% = ST, asTy+sT = afb_+s"y—aBb_ = sy and B,_1 = Wy_1, where
obviously w = @ and v,,_y = b_ for C},; = I. a

To estimate the benefit of the block BFGS update in Section 5, we use value a =
§"H g, § = Py (see Theorem 2.4 and relation (4.15)), which can be calculated with a
negligible increase in the number of arithmetic operations:

12



Corollary 4.2. Let H[l] = H], n > 1, S = [S[l],...,S[n]] é [S, S], Y = [Yv[l],...,y[nﬂ é

Y, 4], S 2 (S, 81, Vi = [Ym,y], matrices Sﬁ i Cli be nonsingular, matrices Hp) be
given by update (4.1), i=2,...,n, with Hy=CI, { >0, matrices H, P[n], U,E by (4.15)
and (4.19) and let §= P[n]y, a= yTHy Then
a= ClyP+y" S U (E+¢YTY ) U STy —2¢y"S UV Ty, (4.22)
where )
E = diag|}(S1+37),..., 3(Saa 437 ,),0], YESuCit, (4.23)
i1=1,...,n—1, and the dimension of the null matriz is equal to dlm(Y S[n]C[n])

Proof. In the same way as in the proof of Theorem 4.1 we get (4.20). Furthermore,
since S P[n] =0 and Pn] = D, from (4.15) we obtain
§ T U
P H By = H = Sy St Cry) STy (4.24)
In a similar way as in the proof of Lemma 4.2 (relation (4.9)) we prove (the dimension
of the null principal submatrix is equal to dim ¥+ ...+ dim >, 1)

. e v =1 0 s
St STY 1 Ch Sn =SU"” l ]U*ST;
[ }( [n}! [n] ™1 ]) [n] [n]S["]C[n]
for Hy = (I, ¢ > 0, this together with (4.19)—(4.20) and (4.24) immediately gives
B Py = S0 TEU T4 (TS0 TYT) (=Y 0 157), (4.25)
and subsequently yields (4.22) by é:yT(P[%H P[n])y O

Using representation (4.10) or (4.17), the direction vector and an auxiliary vector
YTH g, (see Section 5) can be calculated effectively, similarly as for the BNS method,
see [1]. E.g. for H=(I and matrix H; = Hp, 1) given by (4.10) we have (omitting index n)

—Hygp = —Cgi — S|UTT(B+YTY)U ST, — (Vg )| + V[CUTSTg, ], (4.26)

YTH, g = (YT + YB|UTH((B+ (YY)USTg, — (¥7g. ) | -YTY Uy, |, (4.27)
where in brackets we multiply by low-order matrices. Similarly for H, given by (4.17)

—Hoge = —Cor = S|UTT((E+ QYY) 01879, = YTy, ) |4V (0!8, s (4.28)

from this we easily obtain the corresponding representation of Y7H g, .

In comparison with the BNS method, here U, U are not triangular matrices gener-
ally, which can complicate calculations. Using factorization S[{j Yy=RyLy, 1=1,...,n
where Rp;) and L[Tﬂ are upper triangular matrices, and denoting Lp=diag[ Ly, ..., Lpy ],
E =Ly (E+¢YTY), we can set U = Ur Lp, where Ur = U L' and LE are upper
triangular matrices, and rewrite (4.26) and £ in the form

—Hi g, =—(gs — S[U;T (8L51U515T9+ - CLBTYT9+)} - Y[CL51U515T9+}, (4.29)
1 1
In case of matrix U we can proceed similarly. If we denote

13



N STV ST - St Y S ~ Y, B
U[m:[”” T‘?], U[n]:[ ]” y] E[n]=[~ 5] (4.31)

sty aul sty gl K
(submatrices of U,U, E in (4.18)), we can see that for 5[7;}}/[”] positive definite (thus
sy =b—sty_y's_/b_>0 and 5’[{;] Y}, positive definite) a RL factorization exists for U 7]
by Lemma 4.1, because all its principal minors are obviously nonzero. Since they do not

change by adding to a row (column) a multiple of another row (column), we can also
factorize matrix Uy, and write Up,) = RML[ ], where R[n], L[n] are upper triangular matri-

ces. Denotlng LD dlag[L[l], ooy L, L[n]] E=1; (E—l—CYTY) we can set U=UrLp,
where Up=UL7;' p and L are upper triangular matrices, and rewrite (4.28) and E:

~Hig,=—Cgy — S[U;" (SLBIUT—IST —CLp Y g )|+ Y [CLp' U S g ], (4.32)
£ dlag[ (RE LGS Yin) o (B LS Vi) Lyl B [+ CLEYTY. (4.33)

Our experiments indicate, that this approach can also improve numerical results.

5 Implementation

Using results from the previous sections and assuming that Cjy) = ... = C},) = Cv’[n} =1
and H; = (I, ¢ = b/y"y > 0, we will propose a suitable splitting of matrices S,Y,
S = [Sup, .Sl = [S,s], Y = Yu,..., Y] = [Y,y], n € [1,m] and describe the
corresponding algorithm. As we mentioned in Section 4, at first we form the submatrix
S[:Z]Y[n} to have maximum of the latest QN conditions satisfied.

In this Connection from now on we denote a set of indices j of vectors s;,y; which
form matrices Sy, Yj; by Z;, a number of column of these matrices by m; > 1,71 =1,...,n,
and a set of 1nd1(:es ] of vectors s;,y; which correspond to entries of matrix [STY]Z (see
Section 1), 1 <v <7 <m, by Z/. Obviously, > ; m; = m.

In accordance with the theory in Sections 2,3 we should use the block BFGS update
whenever an objective function is close to a quadratic function (e.g. near to a local
minimum). Taking this into consideration, we find such positive definite (to have direction
vectors descent) submatrices SM i) of the largest order, for which A; <4, for i=n, A; <
otherwise, where numbers A; = max;, j,ez,{(5] s, —51.55,)% (bj,bj,)} (zero for quadratic
functions), can serve as a measure of the deviation from a quadratic function, i=n, ..., 1.

On the other hand, the use of this update can deteriorate stability, which is most
noticeable in case of the last block S[C,[;]Y[n] if it is almost symmetric, i.e. A; < d3. There-
fore to select the suitable choice from (2.26)—(2.28) for such a block, we estimate the
benefit of the block BFGS update in comparison with the corresponding BFGS updates,
see below. If we regard this benefit as sufficient or if m,, < 2, we always use the choice
(2.26), otherwise we denote a; ; = (Sﬁ]if[n])id-, 1,j=1,...,m, and calculate value

My —2

0= Z @i @ il /b (5.1)

(this formula was chosen empirically), which can be also regarded as an estimate of the
deviation f from a quadratic function and is equal to zero for quadratic function if t_ =1,
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see Theorem 3.2. Subsequently, we use the choice (2.26) for § <y, (2.27) for 6 > 05 or
574> dg and (2.28) otherwise, see Algorithm 5.1 and Procedure 5.3 for details.

It follows from the proof of Theorem 2.4 that ||GY2H, G2 —I||% = (), E=b/b €
(0,1] for STY symmetric positive definite, where quadratic function ¢ given by (2.25)
is nonincreasing on [0,1], all its coefficients are independent of o € R™, ¢(0) = | M|/%
corresponds to H, ¢(b/b) to the standard BFGS update of H, i.e. (2.19) with the choice
(2.27) and (1) to the block BFGS update of H, i.e. (2.19) with the choice (2.26).
Although we cannot calculate either p(&) or ¢’(£), the following lemma shows that the
ratio b/b and a suitable estimate of the decrease of ¢ on [b/b,1] can be considered as
good indicators of the benefit of the block BFGS update for STY near to symmetric.

Lemma 5.1. Let we denote quantities a,b as in Theorem 2.4, w, M as in the proof of
Theorem 2.4, & = b/b €(0,1] and let function (&) be given by (2.25). Then

p(&)—p(l) > (1—a/b)*(1-&)* (5.2)
[p(0) — @(1)]/[0(0) —p(1)] < &(2—&).

Proof. Quadratic function (2.25) can be written in the form

»(€)
Since ¢ < d by the Schwarz inequality, we obtain
p(&) — (1) =c(&l — 1) +2d(1 - &) > e(1 — &)*.
Denoting ¥(t) = (t& — c€2)/(t — ¢), t# ¢, we have
[p(0)—(€]/[p(0)—p(1)] = (2d&1 —c&7)/(2d—2) = ¥(2d) < (20) = &1(2-&)
by '(t) = e(§f — &)/ (t — ¢)* < 0. O

Both values @, b can be calculated efficiently (with a negligible increase in the number
of arithmetic operations): to calculate b, by analogy with (2.21) we use formula

b="b—s"Yiu(SE V) Sty (5:5)

€’ —2de + M7, c= (@"Mw/|wf)*=(1-a/b)?, d=|Mo[/a]. (5.4)

(for the proof of (2.21) we need not the symmetry of S7Y") and a can be calculated by
(4.22). Since we need this value while we create blocks Sy, Y}, and thus we have not
blocks Sp;), Yji), @ < n, created yet (see Algorithm 5.1), we will calculate only an estimate
ovf this value, assuming that all matrices Sy, Y};), ¢ < n, have one column, i.e. that matrix
H given by (4.20) is calculated by the BNS method, see Section 1. In view of Lemma 5.1
we regard the benefit of the block BFGS update as sufficient, if (1 — b/b)|1 — a/b| > 1
together with b/b > 1.5 or if b/b>50 (this criterion was found empirically).

To improve the readability of the main algorithm, we first present three auxiliary
procedures. Procedure 5.1 serves for updating of basic matrices STY, YTV, similar to
the algorithm given in [1] for updating of matrices D, U, YTY in (1.5). In comparison
with the standard BNS method, where the upper triangular matrix U is used, we need
the whole matrix STY here, therefore we use an additional vector Y7s = —t YTHg, see
also Algorithm 5.1. Note that the number of arithmetic operations is approximately the
same as for the corresponding algorithm in [1]. We present the whole procedure for com-
pleteness, although some parts of steps (ii), (iii) are contained in Step 1 of Algorithm 5.1.
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Procedure 5.1 (Updating of basic matrices)

Gliven:

(1):

(iii):
(iv):

t > 0, matrices S’, Y, STY, Y?Y and vectors S, Y, Gt s STg, YT, YTHg.
Set S:=[9,s], Y :=[Y,y].

Compute S7g, = [S7g,, s7g,], Y7ge = [Y7g4, y7g4], Yis = —tY'Hy.
Compute STy = STg, —STq, YTy =Yg, Y7y, sTy, y7y.

STy STy YTy YTy

- YTY .= N
sTy sTy yTY yTy

Set STY = , and return.

Procedure 5.2, based on Lemma 4.1, is used for seeking out of the positive definite
bottom-right-corner submatrix of [STY]Z of a maximum order (with ip =0) and for its
RL factorization (with ip = 1), see Procedure 5.3.

Procedure 5.2 (RL factorization of A)

Given:

(i):

(ii):
(iii):

(iv):

A factorization indicator ip, a global convergence parameter ep € (0, 1), indices
bounds v, 7, v < 7, matrix [STY]} 2 A

If ip=0set A==A+AT. Setv=v—v+1,0:=0.

If ip=0and A;; <epTrA set v:=min(v+v,7) and go to (). If =1 go to (iv).
Set Ay ;= Ay /Aps, j=1,...,0—1. Set A;; = A;; —AisAs;,i=1,...,0—1,
j=1,...,0—1. Set v := v — 1 and go to (7).

If 7;D = 0 return. Set Li7j = Ai,j for 1 S] <1 é I;, Li7j =1for 1 S j =7 S 177
R, j:=A; jfor1 <i<j<pv, L;; =R, ; =0 otherwise. Return.

The following Procedure 5.3 is used for formation and factorization of blocks S[I;}Ym,

i=1,.

..,n and selection of the suitable update formula. Note that to simplify updating

with the choice (2.27), we merely create block S[E]YM of order 1, see step (v).

Procedure 5.3 (Block generation)

Given:

(1):

(ii):
(iii):

(iv):

(v):

Symmetry tolerances d1, d9, 03, update-type tolerances d4, d5, dg, 6; >0,i=1,...,6.

Set §:= d;, an indices upper bound 7 := m, an auxiliary block index ig:=1 and
an update-type ((2.26) —(2.28)) indicator iy := 0.

Find a minimum indices bound v such that max;, ;,c7z {(Sﬁyjz_sg;yjl) 2/(bj, bjl)} <.

Using Procedure 5.2 with 7p =0, possibly correct the indices lower bound v. If

m<3or v<mor 7—y <2 Or max;, j,cry {(sjrlyj2 —SJTZyjI)Q/(ijbjl)} >3 go to (v).

Compute 0 by (5.1), @ = ac by (4.22), b by (5.5) and b=b—sTy_sTy/b_. If
((1A—B/b)\1—&/5| >1 and b/b>1.5) or b/b>50 or 6 <, then go to (v). If 6> ds
or b/b>dg set iy :=1, otherwise set iy :=2.

If iy=1set v:=v and iy :=0. Set A;,:=[STY]". If iy =2 and v=m denote by
A;, matrix U[n] in (4.31). Using Procedure 5.2 with ip =1, find matrices R;,=R,
L;,=L such that A;,:=R;,L;,. Set v :=v—1. If 7 >1set §:=0y, ip:=ip+1
and go to ().
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(UZ) Setn := ?:B, S[{}Ym = An,iJrl, R[z] = RnfiJrla LM = Ln7i+17 ’l:l, o, n. If ZU:2
set R[n] = RM, L[n} = L[n]. Return.

We now state the method in details. For simplicity, we omit stopping criteria and a
contingent restart when some computed direction vector is not descent.

Algorithm 5.1

Data: A maximum number m > 1 of columns S,Y, line search parameters 1, €5, 0 <
£1<1/2, g1 <e9 <1, tolerance parameters d1,...,d0, 0; >0, i€{1,...,6}, d4<Js,
and a global convergence parameter p € (0, 1).

Step 0: Initiation. Choose starting point zo € RY, define starting matrix Hy = I and
direction vector dy = —go and initiate iteration counter k to zero.

Step 1: Line search. Compute zy1 = xp+1trdy, where ¢, satisfies (1.1), grr1 = Vf(xpi1),
Sk=trdy, Yo =Gk+1 — k> k=54 Yk, Ce="bi/yf Y. I k =0 set Sy = [sx], Yi = [ww],
StY = [styl, Y3 Yi= [yi il compute S gii1, Yyl grs1 and go to Step 4.

Step 2: Basic matrices updating. Using Procedure 5.1, form matrices Sy, Yy, S{ Y%, Y[ V2.

Step 3: Block generation and factorization. Using Procedure 5.3, find a number of
blocks n and an update indicator iy and form and factorize positive defi-
nite blocks S§Yjy = RyLy, i = n,...,1. Form matrices U = U, by (4.11),
Lp=diag[ Ly, ..., Ly |, € by (4.30) and Uy := ULp' for iy = 0 or U by (4.18),
Z/D:diag[L[l], ce L[n&], [:[n] ], £ by (433) and ﬁT = UEBI for iy = 2.

Step 4: Direction vector. Compute dy1=—H} 19,11 and an auxiliary vector Y, Hy 1 gr11
by (4.29) for iy =0 or by (4.32) for iy =2. Set k := k+ 1. If k > m delete the
first column of Sj_1, Y,_1 and the first row and column of S,z_lYk_l, Y,gllYk_l to
form matrices Sy, Yz, S{ Y, Yl Yi. Go to Step 1.

6 Global convergence

In this section, we establish global convergence of Algorithm 5.1. The following assump-
tion and lemma are presented in [17].

Assumption 6.1. The objective function f : RN — R is bounded from below and uni-
formly convex with bounded second-order derivatives (i.e. 0 < G < M\(G(x)) < MG (z)) <
G < o0, v € RY, where \(G(x)) and A(G(x)) are the lowest and the greatest eigenvalues
of the Hessian matriz G(x)).

Lemma 6.1. Let objective function f satisfy Assumption 6.1. Then G < |y|?/b < G and
blsP > G.

Lemma 6.2. Let matrix Ay € R***, 1 > 0, be positive semidefinite, matriz Ay € RF*H
symmetric positive semidefinite. Then 0 < Tr(A;Ay) < Tr A; Tr As. Moreover, if Ay is
symmetric positive definite, then Tr(A;A3") < Tr Ay (Tr Ay)#~1/ det A,.

Proof. We can write 4y = QAQT with @ orthogonal and A diagonal with A; > 0,
i=1,..., 1, thus Tr(A;As) = Tr(A,QAQT) = Tr(KA), where matrix K = QTA,Q is
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obviously positive semidefinite, which immediately yields K;; > 0, ¢ = 1,..., u. Since
TI‘(AlAQ) :TI"(KA) = ?leiiAizﬁ we get 0 S TT(A1A2> S Tr K TrA="Tr A1 Tr AQ.

If Ay is symmetric positive definite, all eigenvalues A;; of matrix A, satisfy A; >
det Ay /(Tr Ap)#~1, i=1,..., u, which yields

Tr(A A7) =Tr(A; QA QT) =Tr(K A~ ZKHA < [(Tr Ap)»~Y/ det Ay| Tr Ay
in view of >t | Ky =Tr K =Tr A;. a

Lemma 6.3. Let matrices Ay, Ay € R 11> 0, Ay nonsingular. Then (Tr(A;A51))% <
puTr(ATA)) (Tr(ATAs)) Y/ (det Ag)2.
Proof. For any A € R”X’Lwe have
(Tr A) = (D(1.Ax) ) < MZA < MZZA — ' Tr(ATA)
i=1

i=1j5=1
by the Schwarz inequality and the assertlon follows from Lemma 6.2 in view of

(Te(4:A5Y))" < pTr(A"ATA AT = pTe((ATAL)(A5A5) 7). 0
Lemma 6.4. Let matriv A€ R***, >0, be positive definite. Then det%(A—i—AT) <det A.

Proof. We will proceed by induction on p. The result is true for p=1. Let it be true for

all positive definite matrices of some order 1 > 1, let w,vE€RH* and matrix A = [ ;4T Z ]
be positive definite. Then
A u

v«

)

_’ A—wl/a u
B 0r a

i.e. det A = avdet(A — uv’/a), where o > 0 and matrix A — uv”/a is positive definite by
Lemma 4.1. This also implies

det = (A+AT)—adet< (A+AT) — wu” fa), (6.1)

where w = $(u+v) and matrix 3(A+A") —ww’/a is symmetric positive definite. Using
the induction hypothesis and 1dent1ty det(K+ qq")=(1+ ¢"K'q) det K (K nonsingular
matrix, ¢ vector), which for K positive definite yields

det(K+ qq") > det K, (6.2)
we get B
det A = adet(A—uwvl/a) >« det%(A—uvT/oz—i-AT—vuT/a)
o det(5(A+AT) —ww’/a+(u — v)(u — v)T/(4a))
> «det %(A—I—AT)—wa/oz) = det $(A+ A7)
and the induction is established with p 4 1 replacing pu. a

Lemma 6.5. Let ACR*H, weRF, u,d>0, matriz A= [ ZjT Z} be symmetric positive
definite and det A>§(Tr A)**1. Then det A>4(Tr A)*.

Proof. Matrices A— ww’/a, A are symmetric positive definite and o >0 by Lemma 4.1,
thus Tr A > o, Tr A > Tr A. Using (6.2) and (6.1), we obtain

det A>det(A—ww’/a)=(detA)/a>§(Tr A)*Y/Tr A=6(Tr A)*>6(Tr A)*. O
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Theorem 6.1. Let objective function f satisfy Assumption 6.1. Then, Algorithm 5.1 gen-
erates a sequence {gx} that either satisfies klim|gk|:O or terminates with gx=0 for some k.

Proof. Procedure5.2 with ip = 0 de facto computes RL factorization of matrices Ay =
%(Sﬁ Y[i]—i-Y[;f}FS[i]), where L has unit diagonal entries. For m; > 1 (the number of columns
of matrices Sy, Y;)) all diagonal entries of R are greater than epTr S[{]Ym =epTrAp in
view of step (ii) of Procedure 5.2 and for m; = 1 the only entry of R is TrAp) >epTrAy
by ep < 1, thus for i=1,...,n and k>0 by Lemma 6.4 we have

1 -1 mi
det(2 ((Sﬁﬁi])_l+(}q53[i])_l)> > det SE‘ZF}YM > det A[i] > (EDTI"AM) . (6.3)

We assume that Cjy = I, i=1,...,n, (see Sectin 5) and denote Hy = %(H[i]%—Hé}),
B[l]_H[l] , B[z]_[j[[;}l’ Bk:(%(Hk+Hg))_17 Bk:%(Bk‘i_Bg), Z:1, Ce ,n+1, k 2 0. Since
in all iterations we choose Hyyj= (1, o= bi/|yx|*, i.e. Bpy=(|yx|%/bk)I, Lemma 6.1 gives

Tr B[l] = (|yk|2/bk) Tr1 < NG, det B[l] = (|yk|2/bk)NZ GN, k>o. (6.4)

(i) Suppose first that iy =0 (i.e.in the kth iteration for all blocks Sf;Y};; we use the
block BFGS update, i.e. set H = Hj, 1= Hp,41), where matrices Hj;;q) are given by (4.1),

i=1,...,n). By Corollary 2.1, Theorem 2.3 (b) -(c) and (6.3), updates (4.1) yield
By = Biij— Byi Sy (S By Si) ™ Sy B+ Vi Ay Y (6.5)
Bjisy) = By~ ) B Sy (S B S) ™ S B +Yia (Vi Su) ™Y » (6.6)
det By > det—(B[iH}—i—B[iH) — det By det Ay /det ShBwSw), (6.7
1=1,...,n, where matrices S 1S} are symmetric positive definite by Theorem 2.3 (d),

since Algor1thm5 1 generates all blocks S[z] ] positive definite by Lemma 4.1 and thus
all columns of matrices Sy, Y|, i=1,...,n, are linearly independent.
Relation (6.5), Lemma 6.2, relation (6.3) and Lemma 6.1 give

Tr Bjiyq—Tr By < Tr(YTY[i]A_ ) < TrY:fYZ](TrA[ )Y (epTrAp)™
= eDmZTrY[ Vig/Tr Ay < e (ly12/65) /ep < mi G /ey,

i=1,...,n. Using (6.4), in view of ep <1 and Y7 ;m;=m this yields

(6.8)

TrB[i]g(N+m/eg)@:®o, i=1,...,n+1, TrBy1=TrBy:11<60p, k>0. (6.9)
Since TrB[nH]—TrB[n]gTr(Y[n]Y](Y[Z]S - )by (6.6), Lemmas 6.1-6.3 and (6.3) give

mn

—1

|y] b e, s ot } TG (),
" ez bj F€Tn b J€Tn bj €p G
which by (6.4) and (6.9) ylelds
Tr Byy1 =Tt Bjpy1) <O+ (m*el)(mG/G)" G 2 0, > 0y, k> 0. (6.10)

Since (det A)'/* < (1/p)Tr A for A € R*# symmetric positive definite, p > 0, we
have (det(S{ By Sh)) Vmi < Ty (S[l B;1S)))/m; and relations (6.7) and (6.3), Lemma 6.2,
relation (6.9) and Lemma 6.1 give
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1

_ 1 1
(detBM>ml > (det;(B[H_l]_—l-B[j;Jrl}))m,> ml(det A[z )mz > ml(&“DTI'A[Z])
det By / det By Te(S S B) — TrSgSa - TrBy (6.11)
miSDTrAm My Ep Zje]ibj > ngD/@O >5DQ

T O,Tr Sﬁsm Oy Y DY 1%/b; — ©0
i=1,...,n. Using (6.4), this yields
det By > GN(ep G /©)™ ™, (6.12)
det Byy1= det1 (B[nﬂ}—i—B[nH]) > GN(epG/O))™ 2 0,, k> 0. (6.13)

(ii) Let iy =2 in the kth iteration, i.e. for blocks S%Ym, 1=1,...,n—1, we use the
block BFGS update (thus also Tr Bj,) < ©q (see (6.9)) and (6.12) hold) and for block
S[Z;]Y[n} update (4.14) - (4.15) with C},; = I and 5§ =35, § =i given by (2.28). Denoting
B = H' (positive definite by Theorem 2. 3(d)) Ba = YB+BT"), Hy= J(H+H"),
Ba=Hy' P =1-(1/8%)3s" and Ay =3(5% Y+ Sm), from (4.15) we obtain

B = Bl = Bpu) S (S Bpny )~ 15 Bl +Yiu) (S Vi)™ Vi, (6.14)
Ba = Biyj— B S (S BinSin) ™ Sty By + Yin Ay Vi » (6.15)
det By = det By, . det A,/ det( n]Sn]) (6.16)
by Theorem 2.3 and Corollary 2.1. In the same way as (6.9) and (6.13) we get

TrBya <Oy <©;, TrBy=TrB<0O;, detBy>0O,. (6.17)

Denoting u = B3/V3TBs = B3/\/8TBAs, v = BT/V§T Bs = BY5/1/37 B3, we obtain
Bry1 = B —(1/8"B8)B3s8"B + (1/8"))99"= B — wo™ + (1/5"9) 99", (6.18)
By = Ba— (1/§TBA§)?A§A§TBA—i—_(1/§TQ)gjng—i— (1/4)(u=v)(u—v)", (6.19)
B = ((1/8"9)83"+ PTH,P) ' = By — (1/8TB48) B35 Ba + (1/579)99", (6.20)

by (4.14), Theorem 2.3 and relations 2(uvv” 4+ vu”) = (u + v)(u + v)T — (u — v)(u — v)"
and L (u+v) = (1/5"B48)B43. Setting @ = BEI/QU, U= Bgl/%, we get
—2u"v < |ul® + |v]* = @' Bau + 0" Bav < 2Tr By < 26, (6.21)
u=u"Hyu = u"Hu =1 = 0"0 and (6.17). Using (6.2) with ¢ = 1(u — v),
K = By — (1/5"B48)Ba35"B A + (1/5™)535", (6.19) and Theorem 2.3, we obtain
det Byq > det K = (det B4) §74/57B 5. (6.22)
From §= Py, §=PTs, where P=1—(1/b_)y_s, we have
<Pl yl=lyl(s-Ily-1/b-) <lyly G/G, 8| [PM]|[s|<|s]\/G/G (6.23)
by Lemma 6.1. Further, by Theorem 2.5 we have 57 = sTj=b —sly_ sTy/b_. Applying
Lemma 6.5 repeatedly (m,—2) times to inequality det Ay, > 5" (Tr Apy)™ (see (6.3)),
we have det %([3_, s/Tly_, yl+ [y, y]T[s_, s]) > e (b_+b)?. Using Lemma 6.4, we get
b_ (sTy+sTy_)/2 '>5mn (b_+D)?
(sTy+sTy_)/2 b Dy

Since matrix B, is symmetric positive definite, from (6.17)— (6.24) we obtain

b_ sy>i
sty b |~ b_

ATA

§y=— >ehb.  (6.24)

b
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KR yl*G G A

Tr Byy1=Tr B—ulv+ AT@<2@1+ bG§2®1+m—G O3, Tr By <Os, (6.25)
15 sy Oy, embG eMG? A

det Byy1 > (det B >—= > 0,-2= £ 9, 6.26

et By > (de A)ATB 5757 0, sPa 2@1G 4 ( )

k > 0, with ©3>0; and ©,<O,, by Lemma 6.1, (6.13), ep<1, G <G and (6.9) - (6.10).
(iif) The lowest eigenvalue A\(By) of By, satisfies A(By,) >det By,/(Tr B)N~! by Tr By=
Tr By, k>0. Setting qu=H,"’gx, from (6.9)—(6.10), (6.13) and (6.25)—(6.26) we get

(skgx)®  _ siBusk geHige _ stBsk Gk o det By L 6
Isel?lgl®>  sksk giow stsk GBrqr — (TrBy)N-t v g, ~ O3 7

which implies klim lgr] = 0, see Theorem 3.2 in [15] and relations (3.17)—(3.18) ibid. O

7 Numerical experiments

In this section, we compare our results with the results obtained by the L-BFGS method,
see [8], [14], by the BNS method [1] and by our best limited-memory methods based on
vector corrections, see [18], [17], using the following collections of test problems:

e Test 11 from [11] (55 chosen problems, computed repeatedly ten times for a better
comparison), which are problems from CUTE collection [2], some of them modified;
used N are given in Table 1, where the modified problems are marked with "*’,

e Test 25 from [10] (68 chosen problems), N =10000.

Problem N | Problem N | Problem N | Problem N
ARWHEAD 5000 | DIXMAANI 3000 | EXTROSNB 1000 | NONDIA 5000
BDQRTIC 5000 | DIXMAANJ 3000 | FLETCBV3* 1000 | NONDQUAR 5000
BROYDN7D 2000 | DIXMAANK 3000 | FLETCBV?2 1000 | PENALTY3 1000

BRYBND 5000 | DIXMAANL 3000 | FLETCHCR 1000 | POWELLSG 5000
CHAINWOO 1000 | DIXMAANM 3000 | FMINSRF2 5625 | SCHMVETT 5000
COSINE 5000 | DIXMAANN 3000 | FREUROTH 5000 | SINQUAD 5000

CRAGGLVY 5000 | DIXMAANO 3000 | GENHUMPS 1000 | SPARSINE 1000
CURLY10 1000 | DIXMAANP 3000 | GENROSE 1000 | SPARSQUR 1000

CURLY20 1000 | DQRTIC 5000 | INDEF* 1000 | SPMSRTLS 4999
CURLY30 1000 | EDENSCH 5000 | LIARWHD 5000 | SROSENBR 5000
DIXMAANE 3000 | EG2 1000 | MOREBV* 5000 | TOINTGSS 5000
DIXMAANF 3000 | ENGVAL1L 5000 | NCB20* 1010 | TQUARTIC* 5000
DIXMAANG 3000 | CHNROSNB* 1000 | NCB20B* 1000 | WOODS 4000

DIXMAANH 3000 | ERRINROS* 1000 | NONCVXU2 1000
Table 1: Dimensions for Test 11 — modified CUTE collection.

The source texts and the reports corresponding to these test collections can be down-
loaded from the web page www.cs.cas.cz/luksan/test.html.

All methods are implemented in the optimization software system UFO, described in
[13] and introduced in www.cs.cas.cz/luksan/ufo.html. We have used m=5, §;=1072
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52 = 10_1, 53: 10_13, 54: 10_10, (55: 10_3, 66:0'57 Ep= 10_6, &1= 10_4, Eo = 0.8 and the

final precision ||g(2*)]|o < 107°.

Table 2 contains the total number of function and also gradient evaluations (NFV)

and the total computational time in seconds (Time).

Test 11 Test 25
Method NFV  Time | NFV  Time
[-BFGS 80539 13.941 | 501651 574.59
BNS 78704 14.344 | 517186  661.66
Alg.4.1in [17] | 64395 13.038 | 319565 420.00
Alg. 4.2 in[18],n=4 | 63987 13.063 | 309650 415.27
Alg.5.1 65228 12.211 | 371830 468.19

Table 2: Comparison of the selected methods.

For a better demonstration of both the efficiency and the reliability, we compare
selected optimization methods by using performance profiles introduced in [4]. The per-
formance profile py/(7) is defined by the formula

number of problems where log,(7pa) < 7

pu(7) total number of problems

with 7 > 0, where 7p s is the performance ratio of the number of function evaluations
(or the time) required to solve problem P by method M to the lowest number of function
evaluations (or the time) required to solve problem P. The ratio 7p,/ is set to infinity
(or some large number) if method M fails to solve problem P.

The value of py(7) at 7 = 0 gives the percentage of test problems for which the
method M is the best and the value for 7 large enough is the percentage of test problems
that method M can solve. The relative efficiency and reliability of each method can
be directly seen from the performance profiles: the higher is the particular curve, the
better is the corresponding method. Figures 7.1-4, based on results in Table 2, reveal the
performance profiles for tested methods graphically.

Performance profiles for TIME

- — e R T T e = = T Tk sk
mmEmm "
0.9 ',; 0.9 /,}
0.8 "/ 0.8 f
,
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X o5 J 5
0.5 4
0.4 ,’ A
’ oal 1
034 ¢ 41/
J — —L-BFGS [ — —L-BFGS
02y I 0.3 J'c I
Alg5.1 A Alg5.1
0.1 ; ; . ; . ; : : : 0.2 ; ; ; ; , . : : :
0o 02 04 06 08 1 12 14 16 0 02 04 06 08 1 12 14 16 18

T

T

Figure 7.1: Comparison of py/(7) for Test 11 and various methods.

Figures 7.1-2 demonstrate the efficiency of our method in comparison with the BNS

and the L-BFGS methods and from Figures7.3-4 we can see that the numerical results
for the new method and the results for our methods [18], [17] are comparable.
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Figure 7.3: Comparison of py/(7) for Test 11 and various methods.
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Figure 7.4: Comparison of py/(7) for Test 25 and various methods.

8 Conclusions

In this contribution, we derive a block version of the BFGS variable metric update formula
for general functions and show some its positive properties and similarities to approaches
based on vector corrections ([18], [17]).

In spite of the fact that this formula does not guarantee that the corresponding direc-
tion vectors are descent, we propose the block BNS method for large scale unconstrained
optimization, which utilizes the advantageous properties of the block BFGS update and
is globally convergent.

Numerical results indicate that the block approach can improve unconstrained large-
scale minimization results significantly compared with the frequently used L-BFGS and
the BNS methods.
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