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Abstract:

Several modifications of the limited-memory variable metric (or quasi-Newton) line search
methods for large scale unconstrained optimization are investigated. First the block version
of the symmetric rank-one (SR1) update formula is derived in a similar way as for the block
BFGS update in Vlček and Lukšan (Numerical Algorithms 2019). The block SR1 formula
is then modified to obtain an update which can reduce the required number of arithmetic
operations per iteration. Since it usually violates the corresponding secant conditions, this
update is combined with the shifting investigated in Vlček and Lukšan (J. Comput. Appl.
Math. 2006). Moreover, a new efficient way how to realize the limited-memory shifted BFGS
method is proposed. For a class of methods based on the generalized shifted economy BFGS
update, global convergence is established. A numerical comparison with the standard L-BFGS
and BNS methods is given.
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1 Introduction

In this report we propose some modifications of the variable metric (quasi-Newton) line
search methods, see [5], [12], [15], for large scale unconstrained optimization

min f(x) : x ∈ RN ,

with the intention to reduce the number of arithmetic operation per iteration. We assume
that the problem function f : RN →R is differentiable.

The variable metric (VM) line search methods are iterative. They start with an
initial point x0 ∈ RN and generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk,
sk = tkdk, k ≥ 0, where dk is the direction vector and tk > 0 is a stepsize, chosen regularly
in such a way that

f(xk+1)− f(xk) ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk (1.1)

(the Wolfe line search conditions [15]), 0 < ε1 < 1/2, ε1 < ε2 < 1 and gk = ∇f(xk).

Usually dk = −Hkgk with a symmetric positive definite matrix Hk
∆
= B−1

k (obviously this
guarantees that dk are descent directions). Typically H0 is a multiple of I and Hk+1 is
obtained from Hk by a VM update to satisfy the secant (quasi-Newton) condition

Hk+1yk = sk (1.2)

with the difference vectors sk, yk = gk+1 − gk, k ≥ 0. To simplify the notation we
frequently omit index k and replace index k+1 by symbol + and index k−1 by symbol −.

Among VM methods, the BFGS method, see [5], [12], [15], belongs to the most
efficient; the BNS [1] and L-BFGS ([8], [14]) methods represent its well-known limited-
memory adaptations. We refer to Section 2 for a brief description of these methods.

To incorporate more past information to the update formula, the block (multiple
secant) VM updates were proposed. The block BFGS update was derived in [16] for
symmetric positive definite VM matrices, using a variational approach, further in [6] for
quadratic functions, using corrections for the exact line search, and recently in [20] for
general functions, using a block variant of the approach in [3]. This update satisfies
the secant conditions with all used difference vectors and brings the best improvement
of convergence in some sense [19, 20] for quadratic objective functions, but it usually
needs some adaptations to guarantee that the corresponding direction vectors are descent
directions for general functions.

In Section 3 we derive the block version of the standard SR1 formula [15] in a similar
way. In Section 4 we describe some block modifications of quadratic functions and show
that they can preserve a similar character, although the corresponding secant conditions
and VM updates are changed. Modifying the block SR1 update in this way, we obtain
an update which can reduce the required number of arithmetic operation per iteration.
Since it usually violates the corresponding secant conditions, in Section 5 we combine
this approach with the shifting investigated in [17] to derive the shifted economy VM
updates. Moreover, we propose a new efficient way how to realize the limited-memory
shifted BFGS method. For a class of methods based on the generalized shifted economy
BFGS update, we establish global convergence in Section 6. In Section 7 we give a
numerical comparison with the standard L-BFGS and BNS methods.
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2 The L-BFGS and BNS methods

In this section we briefly describe the limited-memory VM methods L-BFGS [8, 14], im-
plemented in [9] (subroutine PLIS), and BNS [1]. These methods are based on the BFGS
update formula, mentioned in Section 1, which preserves the positive definiteness of H
and can be written in the following quasi-product form

H+ = (1/b)ssT +
(
I − (1/b)syT

)
H

(
I − (1/b)ysT

)
, b = sTy (2.1)

(b > 0 for g 6= 0 by (1.1)). To adapt the BFGS method for large scale optimization, we
choose HI

k ∈RN×N in every iteration (usually HI
k = ζkI, ζk > 0) and recurrently update

HI
k by the BFGS formula, using m pairs of vectors (sk−m̃, yk−m̃), . . . , (sk, yk) successively,

where
m̃ = min[k, m̂−1], m = m̃ + 1, k ≥ 0 (2.2)

and m̂>1 is a given parameter. To compute the direction vector, the updated matrices
(approximations of the inverse Hessian matrix) need not be formed explicitly.

Here we focus mainly on the BNS update. Instead of the famous compact form [1],
we utilize in this report its form (also given in [1])

H+ = SR−TDR−1ST +
(
I − SR−T Y T

)
HI

(
I − Y R−1ST

)
, (2.3)

where Sk =[sk−m̃, . . . , sk], Yk =[yk−m̃, . . . , yk], Dk is the diagonal matrix with the diagonal

entries of ST
k Yk and the matrix Rk

∆
= [(Rk)ij]

k
i,j=k−m̃ is defined by (Rk)ij = (ST

k Yk)ij for
i ≤ j, (Rk)ij = 0 otherwise (an upper triangular matrix), k ≥ 0. We can see that for
HI = ζI the direction vector −H+g+ can be calculated efficiently (without computing of
H+ explicitly) by

−H+g+ = −ζg+ − S
[
R−T

(
(D+ ζY T Y )R−1STg+− ζY Tg+

)]
+ Y

[
ζR−1STg+

]
, (2.4)

where in the square brackets we multiply by low-order matrices.

3 The block SR1 update

The approach in [20] how to derive the block BFGS update variationally, see Section 1,
can be easily modified to obtain the block version of the SR1 update. In [20] we found
a VM matrix H∗ satisfying (H∗)Y = S nearest to the given symmetric HI ∈ RN×N in
some sense, in the form

H∗ = P T
V HIPV + V (V T Y )−T ST PV + S(V T Y )−1V T , PV = I − Y (V T Y )−1V T , (3.1)

where V is a given N ×m matrix for which V T Y is nonsingular. If V = ST , T ∈ Rm×m

nonsingular and H+ = H∗, it gives the block BFGS update

H+ = (I − S(Y TS)−1Y T )HI(I − Y (ST Y )−1ST ) + S(ST Y )−1ST . (3.2)

The relation (3.1) can also be expressed in another way. Denoting Z = S −HIY , we
get
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H∗ =
(
P T

V HI + V (V T Y )−T ST
)
PV + S(V T Y )−1V T

=
(
HI − V (V T Y )−T Y T HI + V (V T Y )−T ST

)
PV + S(V TY )−1V T

=
(
HI + V (V T Y )−T ZT

)
PV + S(V T Y )−1V T

= HI −HIY (V T Y )−1V T + V (V T Y )−T ZT PV + S(V T Y )−1V T

= HI + Z(V T Y )−1V T + V (V T Y )−T ZT PV .

Using a similar approach as for the block BFGS update, for V = Z T1, T1 ∈ Rm×m

nonsingular and H+ = H∗ we obtain

PV = I − Y (T T
1 ZT Y )−1T T

1 ZT = I − Y (ZT Y )−1ZT , ZT PV = 0 (3.3)

and
H+ = HI + Z(T T

1 ZT Y )−1T T
1 ZT = HI + Z(ZT Y )−1ZT , (3.4)

which is the block SR1 update, see below. Obviously, we have H+Y = S, i.e. the secant
conditions are satisfied for all used difference vectors. Note that for ZT Y symmetric, the
matrices H+ are identical with the limited-memory SR1 matrices [1].

Using Woodbury formula and denoting B+ = H−1
+ , BI = (HI)−1 and W = BIZ =

BIS − Y , for W T S nonsingular we get the following formula, given in [1]:

B+ = BI −BIZ(ZT Y + ZT BIZ)−1ZT BI = BI −W (W TS)−1W T .

4 The block modified VM updates

Our modifications of the block secant conditions and the corresponding VM updates are
based on the following lemma:

Lemma 4.1. Let fQ be a quadratic function fQ(x) = 1
2
(x−x̄)T Ω(x−x̄), x̄∈RN , with a

symmetric positive definite matrix Ω, Sk =[sk−m̃, . . . , sk], Yk =[yk−m̃, . . . , yk], α ≥ 0 and
let denote Ω̂α = (Ω−1+αI)−1 and Ŝα = S +αY . Then x = x̄ minimizes also the function
f̂Q,α(x) = 1

2
(x−x̄)T Ω̂α(x−x̄) and Ω̂αŜα = Y holds.

Moreover, let λ1 ≤ . . . ≤ λN be the eigenvalues of Ω. Then λ1/(1 + αλ1) ≤ . . . ≤
λN/(1 + αλN) are the corresponding eigenvalues of Ω̂α and for λ1 < λN and α > 0, Ω̂α

is always conditioned better than Ω.

Proof. Since Ω̂α is also symmetric positive definite, the functions fQ, f̂Q,α have its global

minima at the same point x = x̄. From ΩS = Y we obtain Ω̂−1
α Y = (Ω−1 + αI)Y = Ŝα,

thus Ω̂αŜα = Y .
Let Ωp = λp , p ∈ RN . Then λ > 0 and Ω−1p = (1/λ)p, thus Ω̂−1

α p = (Ω−1 + αI)p =

(1/λ+α)p and Ω̂αp =
(
1/(1/λ+α)

)
p =

(
λ/(1+αλ)

)
p, where λ/(1+αλ) is the ascending

function of λ. Finally, let λ1 < λN and α > 0. Then the condition number of Ω̂α is

κ(Ω̂α) =
λN

1 + αλN

1 + αλ1

λ1

<
λN

λ1

= κ(Ω).
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The lemma indicates that for S replaced by Ŝα with small α, the character of the
quadratic approximation of f can be similar, although this replacement usually violates
the corresponding secant conditions. To guarantee the positive definiteness of ŜT

α Y (the
symmetry of ST Y is not supposed), we can use the following lemma.

Lemma 4.2. Let the columns of Y be linearly independent, U be an upper triangular
matrix satisfying Y T Y = UT U and let λ̂ ≤ 0 be the minimum eigenvalue of M =
(1/2)U−T (ST Y + Y TS)U−1. Then ŜαY is positive definite for any α > −λ̂.

Proof. Let α > −λ̂. We can write M = QΛQT with Q orthogonal and Λ diagonal with
Λ + αI symmetric positive definite and the assertion follows from

UTQ(Λ + αI)QT U = UT(M + αI)U =
1

2
(ST Y + Y TS) + αY T Y =

1

2
(ŜT

α Y + Y TŜα). 2

When we use S + HIY instead of S for the block SR1 update (3.4) with HI = σI,
σ > 0, we have

H+ = σI + S(ST Y )−1ST , H+Y = S + σY, (4.1)

or
H+ = σI + SXST , (4.2)

if we replace (ST Y )−1 by a suitable symmetric matrix X.
We will see that (4.2) can be considered as an economy variant of the BNS update

(2.3), since using the form (4.2) we can reduce the number of the required arithmetic
operations to calculate the direction vector −H+g+, in comparison with the BNS update.
Suppose that all entries of X have been calculated. While (2.3) needs (4m + 1)N +
O(m2) multiplications, see [1], to get −H+g+ using (4.2), we need only (2m + 1)N +
O(m2) multiplications. Simultaneously, similarly as for the BNS update (see [1]), we can
obviously obtain all entries of the last column of R (see Section 2), thus the whole of R
and D, in a negligible number of arithmetic operations for m ¿ N . Note that in this
economy variant we do not calculate Y Tg+, thus nor Y Ts+ = −t Y T H+g+, see (4.2).

To calculate X (and subsequently H+g+), using only entries of R, we can choose e.g.
X = (R + RT − D)−1 (motivated by (4.1)) if this matrix is symmetric positive definite
(to guarantee the descent property of the direction vector) or X = R−T DR−1 (motivated
by (2.3)), which is obviously always symmetric positive definite. However, these updates
usually violates the corresponding secant conditions.

5 The shifted economy VM updates

The efficiency of the method based on (4.2) can be improved, if we use the shifting
approach investigated in [17]. To satisfy the secant condition H+y = s , we replace s by
s̃ = s− σy, σ ∈ (0, b/|y|2) (to have s̃Ty > 0), together with replacement (4.2) by

H+ = σI + S̃X̃S̃T (5.1)
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with some X̃, see below, instead of X and S̃ = [SP , s̃] instead of S = [SP , s]. The following
theorem shows that e.g. the shifted BFGS update can be expressed in the economy form
(5.1), since we can write it as A+ = (1/b̃)s̃s̃T + P̃ T AP̃ , if we denote A = H − ζI,
A+ = H+ − σI, P̃ = I − (1/b̃)ys̃T , b̃ = s̃Ty, see [17]. Moreover, the theorem shows the
role of the secant conditions and enables us to construct further shifted economy updates
(with other suitable X̃). We can also see that to realize the limited-memory shifted
methods, it can be used the similar approach as in case of the standard BNS method [1].
In every iteration we start with AI = 0 (instead of HI = ζI for the BNS method) and
then calculate the block shifted update (5.1).

Theorem 5.1. Let S = [SP , s], S̃ = [SP , s̃], s̃ = s − σy, σ > 0, b̃ = s̃Ty > 0, X̃ =[
XP w
wT ξ

]
∈ Rm×m, XP symmetric positive definite, w ∈ Rm̃, ξ ∈ R, A = SP XP ST

P ,

A+ = S̃X̃S̃T and u = ST
P y. Suppose that H+ is defined by (5.1) and the columns of S̃

are linearly independent. Then A+y = s̃ (i.e. H+y = s) if and only if

w = (−1/b̃)XP u, ξ = (b̃ + yTAy)/b̃2. (5.2)

If this is the case, then

A+ = (1/b̃)s̃s̃T + P̃ TAP̃ , P̃ = I − (1/b̃)ys̃T , (5.3)

X̃ is symmetric positive definite and it holds

X̃−1 =
[

X−1
P + (1/b̃)uuT u

uT b̃

]
. (5.4)

Proof. We get A+y = S̃(X̃S̃T y), where

X̃S̃T y =
[

XP w
wT ξ

][
u

b̃

]
=

[
XP u + b̃w

wTu + ξ b̃

]
.

Thus
A+y = SP (XP u + b̃w) + s̃(wTu + ξ b̃) (5.5)

and A+y = s̃ is equivalent to

XP u + b̃w = 0, wT u + ξ b̃ = 1 (5.6)

by linear independence of columns of S̃ and further equivalent to (5.2) by A = SP XP ST
P

and b̃ + yTAy = b̃ + uT XP u = b̃− b̃wT u = b̃− b̃(1− ξb̃) = ξb̃2. Let A+y = s̃. From (5.2)
we obtain SP w = (−1/b̃)Ay and

A+ = [SP , s̃]
[

XP w
wT ξ

][
ST

P

s̃T

]
= SP XP ST

P + SP ws̃T + s̃wT ST
P + ξs̃s̃T

= A− 1

b̃
Ays̃T − 1

b̃
s̃yTA +

b̃ + yTAy

b̃2
s̃s̃T =

1

b̃
s̃s̃T + P̃ TAP̃ ,

5



i.e. (5.3). Now we can derive (5.4). We have

[
XP w
wT ξ

][
X−1

P + (1/b̃)uuT u

uT b̃

]
=

[
I + (1/b̃)(XP u + b̃w)uT XP u + b̃w

wTX−1
P + (1/b̃)(wTu + ξb̃)uT wTu + ξ b̃

]
. (5.7)

Since we can rewrite (5.2) as XP u + b̃w = 0 and ξb̃ = 1 + (1/b̃)yTAy, we obtain

wTu + ξb̃ = wTu + 1 +
1

b̃
uT XP u = wTu + 1− wT u = 1

and

wT X−1
P + (1/b̃)(wTu + ξb̃)uT = wT X−1

P + (1/b̃)uT =
(
wT + (1/b̃)uT XP

)
X−1

P = 0.

These relations together with (5.7) give (5.4).
Finally, since the Schur complement of entry b̃ > 0 in X̃−1 is X−1

P , symmetric positive
definite by assumption, X̃ is also symmetric positive definite by Theorem 2.5.6 in [4]. 2

In case of the shifted economy BFGS update, (5.1) can be regarded as the shifted
variant of (2.3) with HI = 0 and the matrix X̃ can be expressed in the form

X̃ = R̃−TD̃R̃−1, (5.8)

where D̃k is the diagonal matrix with the diagonal entries of S̃T
k Yk and R̃k

∆
= [(R̃k)ij]

k
i,j=k−m̃

is defined by (R̃k)ij =(S̃T
k Yk)ij for i≤ j, (R̃k)ij =0 otherwise, k≥ 0 (an upper triangular

matrix). Our experiments indicate that numerical results can be slightly improved, e.g.
if we replace b̃ by b everywhere in the shifted economy BFGS update (5.3). Thus we will
investigate the generalized update (for β = γ = b̃ it is (5.3))

A+ = (1/γ)s̃s̃T + P TAP, P = I − (1/β)ys̃T , β, γ ≥ δ1b̃, δ1 > 0. (5.9)

The following theorem shows that this update corresponds to (5.1) with X̃ = Ũ−T ẼŨ−1

(see below) and that the modification of β, γ influences only the diagonal entries of Ũ , Ẽ.

Theorem 5.2. Let s̃ ∈ RN , S̃ = [SP , s̃] ∈ RN×m, A = SP XP ST
P and XP = U−T

P EP U−1
P

with EP diagonal and UP upper triangular, both nonsingular of order m̃. Let A+ =
S̃X̃S̃T , where X̃ = Ũ−T ẼŨ−1,

Ẽ =
[

EP 0
0T β2/γ

]
, Ũ =

[
UP ST

P y
0T β

]
, β, γ > 0.

Then A+ is given by (5.9) and

X̃−1 =
[

X−1
P + (γ/β2)ST

P yyTSP (γ/β)ST
P y

(γ/β)yTSP γ

]
. (5.10)

Proof. We have

Ũ−TẼŨ−1 =
[

U−T
P 0

−(1/β)yTSP U−T
P 1/β

][
EP 0
0T β2/γ

][
U−1

P −(1/β)U−1
P ST

P y
0T 1/β

]

=
[

XP −(1/β)XP ST
P y

−(1/β)yTSP XP (1/β2)yTAy + 1/γ

]
,

6



A+ = [SP , s̃]
[

XP −(1/β)XP ST
P y

−(1/β)yTSP XP (1/β2)yTAy + 1/γ

][
ST

P

s̃T

]

= A− 1

β
Ays̃T − 1

β
s̃yTA +

yTAy + β2/γ

β2
s̃s̃T =

1

γ
s̃s̃T + P TAP,

ŨẼ−1ŨT =
[

UP ST
P y

0T β

][
E−1

P 0
0T γ/β2

][
UT

P 0
yTSP β

]

=
[

UP E−1
P UT

P + (γ/β2)ST
P yyTSP (γ/β)ST

P y
(γ/β)yTSP γ

]
.

2

The efficiency of the shifted VM updates depends strongly on the shift parameter σ,
see [17]. For the generalized shifted BFGS update, good results were obtained for

σ =
b

|y|2 θκ, θ =
1

1+
√

1−b2/(|s|2|y|2)
, κ ≈ 2

(
σ≈ b

(
|y|+

√
|y|2−b2/|s|2

)2

)
(5.11)

(we refer to [17] for the meaning of θ). To guarantee global convergence, we can replace
(5.11) by

σ =
b

|y|2 θ̄κ, θ̄ =
1

1 +
√

max[δ0, 1− b2/(|s|2|y|2)]
, δ0 ∈ (0, 1). (5.12)

Obviously, this implies 1 +
√

δ0 ≤ 1/θ̄ ≤ 2, thus

1/2κ ≤ θ̄κ ≤ 1/(1 +
√

δ0)
κ, (5.13)

and further
(b/|y|2)/2κ ≤ σ ≤ (b/|y|2)/(1 +

√
δ0)

κ. (5.14)

We now state the generalized shifted economy BFGS method in details. For simplic-
ity, we do not describe stopping criteria and contingent restarts when some computed
direction vector is not a sufficiently descent direction. Note that the contingent restarts
have occurred very rarely in our numerical experiments. First we present an auxiliary
procedure.

Procedure 1 (Updating of basic matrices)

Given: matrices UP , EP , SP , vectors s̃, g+, ST
P g and β, γ > 0.

(i): Compute ST
P g+, ST

P y := ST
P g+−ST

P g.

(ii): Set S̃ := [SP , s̃], S̃Tg+ := [ST
P g+, s̃Tg+].

(iii): Set Ũ :=
[

UP ST
P y

0T β

]
, Ẽ :=

[
EP 0
0T β2/γ

]
and return.

Algorithm 1

Data: A maximum number m̂ of columns S, Y , line search parameters ε1, ε2, 0<ε1 <1/2,
ε1 <ε2 <1 and global convergence parameters δ0 ∈ (0, 1), δ1 > 0.

Step 1: Initiation. Choose starting point x0 ∈ RN , define the starting matrix H0 :=I and
the direction vector d0 :=−g0 and initiate the iteration counter k to zero.
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Step 2: Line search. Compute x+ :=x+td, where t satisfies (1.1), g+ :=∇f(x+), s := td,
y := g+−g and b := sTy. Define σ by (5.12), compute s̃ := s − σy and b̃ := s̃T y.
Define β, γ ≥ δ1b̃ and set m̃ :=min[k, m̂−1] and m :=m̃ + 1. If k = 0 set S̃ := [s̃],
Ẽ := [β2/γ], Ũ :=[β], compute S̃Tg+ and go to Step 4.

Step 3: Basic matrices updating. Using Procedure 1, form the matrices S̃, Ũ , Ẽ.

Step 4: Direction vector. Define H+ by (5.1) with X̃ = Ũ−T ẼŨ−1 and compute d+ :=
−H+g+. Set k := k+1. If k ≥ m̂ delete the first column of S̃− and the first row
and column of Ũ , Ẽ to form SP , UP , EP . Go to Step 2.

6 Global convergence

In this section we establish global convergence of Algorithm 1 in convex case and without
restarts. Note that a suitable restarts technique can guarantee global convergence also
for non-convex f , see e.g. Algorithm 6.1 and comments in the beginning of Section 7 in
[21]. Besides, there are some other possibilities how to establish global convergence of
VM methods for non-convex f , see e.g. [7, 22].

Assumption 6.1 and Lemma 6.1 are presented in [18]. By Theorem 5.2, instead of
(5.1) we can use Hk+1 = σkI + Ak+1

k+1 in Step 4 of Algorithm1, where

Ak+1
k−m̃ = 0, Ak+1

i+1 =
1

γi

s̃is̃
T
i + P T

i Ak+1
i Pi, i=k−m̃, . . . , k, Pi = I− 1

βi

yis̃
T
i . (6.1)

Assumption 6.1 The objective function f : RN → R is bounded from below and uni-
formly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤ λ(G(x)) ≤
G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the greatest eigenvalues
of the Hessian matrix G(x)).

Lemma 6.1. Let the objective function f satisfy Assumption 6.1. Then G ≤ |y|2/b ≤ G
and b/|s|2 ≥ G.

Lemma 6.2. Let Ak+1
i+1 be given by (6.1) with Ak+1

i symmetric positive semidefinite and
βi, γi > 0. Then

Tr Ak+1
i+1 ≤

|s̃i|2
γi

+
(
1 +

|s̃i||yi|
βi

)2
Tr Ak+1

i , i = k − m̃, . . . , k, k ≥ 0. (6.2)

Proof. Using the Schwarz inequality and since |Kp | ≤ |p|Tr K for p ∈ RN and K ∈
RN×N symmetric positive semidefinite, from (6.1) we obtain

Tr Ak+1
i+1 =

|s̃i|2
γi

+ Tr Ak+1
i − 2

s̃T
i A

k+1
i yi

βi

+
|s̃i|2 |yT

i A
k+1
i yi|

β2
i

≤ |s̃i|2
γi

+
(
1 + 2

|s̃i||yi|
βi

+
|s̃i|2|yi|2

β2
i

)
Tr Ak+1

i . 2

Theorem 6.1. Let objective function f satisfy Assumption 6.1. Then Algorithm 1 gener-
ates a sequence {gk} that either satisfies lim

k→∞
|gk|= 0 or terminates with gk = 0 for some k.
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Proof. (i) First we will show

Tr Bk+1 ≤ N/σk ≤ NG2κ, k ≥ 0, (6.3)

where we denote Bk+1 = H−1
k+1. To do it, we can use (5.1), which implies

σkBk+1 = I − S̃k(σkX̃
−1
k + S̃T

k S̃k)
−1S̃T

k .

Since X̃k is obviously symmetric positive definite, we have Tr Bk+1 ≤ N/σk, thus (6.3)
by (5.14) and Lemma 6.1.

(ii) Denoting

C1 = 1/(1+
√

δ0)
κ, C2 = G/(δ1(1− C1)), C3 = (1/G)/(δ1(1− C1)) + C2(C1/G)2,

we will prove that for any i > 0

bi/b̃i ≤ 1/(1− C1), |yi|2/βi ≤ C2, |s̃i|2/βi ≤ C3, |s̃i|2/γi ≤ C3. (6.4)

As regards the first inequality, we get

bi/b̃i = bi/(bi − σi|yi|2) = 1/(1− θ̄κ
i ) ≤ 1/(1− C1)

by (5.13), observing that 1/(1 − t) is an increasing function of t on (0, 1). The second
inequality follows immediately from βi ≥ δ1b̃i and Lemma 6.1; similarly we get |si|2/βi ≤
(1/G)/(δ1(1− C1)); the same inequality holds for |si|2/γi. Considering that σi ≤ C1/G
by (5.14) and Lemma 6.1, it suffices to use |s̃i|2 = |si|2 − 2σibi + σ2

i |yi|2 ≤ |si|2 + σ2
i |yi|2.

(iii) Denoting C0 = (1 +
√

C2C3 )2, we will further prove

Tr Hk+1 ≤ NC1/G + (1 + C0 + . . . + Cm−1
0 )C3

∆
= C4. (6.5)

Using Lemma 6.2, we get Tr Ak+1
i+1 ≤C3+ C0Tr Ak+1

i , i=k−m̃, . . . , k, which yields

Tr Ak+1
k+1 ≤ (1 + C0 + . . . + Cm−1

0 )C3

by Tr Ak+1
k−m̃ = 0. This gives (6.5) by σi ≤ C1/G.

(iv) Setting qk = H
1/2
k gk, from sk = −tkHkgk we get

(sT
k gk)

2

|sk|2|gk|2 =
−tkq

T
k qk

t2kq
T
k Hkqk

−tkq
T
k qk

qT
k Bkqk

=
qT
k qk

qT
k Hkqk

qT
k qk

qT
k Bkqk

≥ 1

Tr Hk

1

Tr Bk

≥ 1

C4

1

NG2κ
, (6.6)

k > 0. It follows from the positive definiteness of Hk that the search direction is a descent
direction. Thus, (6.6) and the Zoutendijk condition (see e.g. [15]) yield limi→∞‖gi‖ = 0,
see Theorem 3.2 in [15] and relations (3.17)– (3.18) ibid. 2

In the same way as in [8] one can show that (6.6) with line search conditions (2.1) and
Assumption 6.1 imply that the sequence {xi} is at least R-linearly convergent.

7 Numerical experiments

In Table 1 we compare the total number of function evaluations (NFV) and the total
computational time in seconds (Time) for the generalized shifted economy BFGS method
(se-BFGS), using X̃ = Ũ−T ẼŨ−1, σ given by (5.12) and β = γ = b, with the VM methods

9



L-BFGS and BNS, see Section 2. We use the collections Test 25 of 67 test problems from
[10] and Test 11 of 55 problems from [11] (problems from the CUTE collection [2], 8 of
them modified, N = 1000− 5625), m = 5, ε1 =10−4, ε2 = 0.9, δ0 = 10−10, δ1 = 1, κ = 2.1
and the final precision ‖g(x?)‖∞ ≤ 10−6.

Note that the source texts and the reports corresponding to these test collections can
be downloaded from the web page www.cs.cas.cz/luksan/test.html.

Test 11 Test 25, N:1000 Test 25, N:2000 Test 25, N:5000
Method NFV Time NFV Time NFV Time NFV Time
L-BFGS 79575 11.39 125348 10.89 188547 37.08 441568 209.44

BNS 76463 9.74 120328 9.39 179629 31.83 434504 187.52
se-BFGS 82103 9.14 126591 9.09 197567 30.30 489690 184.37

Table 1: Comparison of the selected methods.

8 Conclusions
In this contribution, in a similar way as for the block BFGS update in [20] we derive
the block SR1 update variationally. Then we modify it to reduce the required num-
ber of arithmetic operations per iteration. Since it usually violates the corresponding
secant conditions, this update is combined with the shifting investigated in [17] to de-
rive the shifted economy VM updates. Moreover, a new efficient way how to realize the
limited-memory shifted BFGS method is proposed. For a class of methods based on the
generalized shifted economy BFGS update, global convergence is established. Further, a
numerical comparison with the standard L-BFGS and BNS methods is given.

Our experiments indicate that this approach can improve unconstrained large-scale
minimization results compared with our implementation of the frequently used L-BFGS
and BNS methods as regards the computational time.
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