National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Mechanism of action of bacterial toxins elevating the cAMP in host cells
Lepesheva, Anna ; Mašín, Jiří (advisor) ; Petráčková, Denisa (referee)
Cyclic adenosine monophosphate (cAMP) is an universal second messenger that regulates a large number of molecular mechanisms inside the eukaryotic cell. The level of synthesized cAMP is tightly regulated by endogenous adenylatecyclase (AC), and therefore this enzyme is often a target for various bacterial toxins. To manipulate intracellular cAMP levels in a target cell, bacteria have developed two different strategies for their toxins. Bordetella pertussis adenylate cyclase toxin (CyaA), Bacillus anthracis edema factor (EF) and Pseudomonas aeruginosa exotoxinY have in their structure an enzymatic AC domain which is activated by an intracellular cofactor and has several times higher activity than the eukaryotic AC enzyme itself. Other toxins, such as Bordetella pertussis pertussis toxin (PT), Vibrio cholerae cholera toxin (CT), and Escherichia coli heat labile toxin use ADP-ribosylation reaction of AC-coupled heterotrimeric G proteins to increase its activity and uncontrolled cAMP production. This work presents a literature search with accent on the molecular mechanism of interaction of these toxins with the target cell. Keywords: bacterial pathogens, virulence factors, intracellular cAMP elevation, bacterial toxins, adenylatecyclase (adenylylcyclase), Bordetella pertussis, Vibrio cholerae,...
The effect of morphine on the distribution of signaling molecules of the opioid system in lipid rafts prepared from rat heart
Ladislav, Marek ; Novotný, Jiří (advisor) ; Rudajev, Vladimír (referee)
Morphine is an opioid agonist, which can exert cardioprotective effects under certain conditions. Lipid rafts are considered important platforms for membrane organization of signaling proteins and, therefore, these structures could play a role in the effects of morphine, which acts through the opioid receptors. The aim of this thesis was to investigate the distribution of the main components of the opioid receptor and Gi/o-mediated signaling pathway in lipid rafts isolated from rat myocardium, which was affected by various doses of morphine. Because we used different isolation techniques with different solubilization agents (Triton X-100, CHAPS, cholate and sodium carbonate) for preparation of lipid rafts, it was of interest to characterize more closely these preparations. Another aim of this study was to investigate how different methods of isolating these structures affect activity of the key target enzyme of the opioid signaling pathway, i.e. adenylyl cyclase. The presence of signaling molecules of the Gi/o/AC pathway of the opioid system in membrane rafts was confirmed and the distribution of selected proteins was dependent on the type of extractant. We also observed the effect of morphine on the localization of proteins in lipid rafts. Different extractants provided different degree of...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.