National Repository of Grey Literature 9 records found  Search took 0.01 seconds. 
Optimal control of Lévy-driven stochastic equations in Hilbert spaces
Kadlec, Karel ; Maslowski, Bohdan (advisor)
Controlled linear stochastic evolution equations driven by Lévy processes are studied in the Hilbert space setting. The control operator may be unbounded which makes the results obtained in the abstract setting applicable to parabolic SPDEs with boundary or point control. The first part contains some preliminary technical results, notably a version of Itô formula which is applicable to weak/mild solutions of controlled equations. In the second part, the ergodic control problem is solved: The feedback form of the optimal control and the formula for the optimal cost are found. The control problem is solved in the mean-value sense and, under selective conditions, in the pathwise sense. As examples, various parabolic type controlled SPDEs are studied. 1
Estimation in continuous time Markov chains
Nemčovič, Bohuš ; Prokešová, Michaela (advisor) ; Kadlec, Karel (referee)
Title: Estimation in continuous time Markov chains Author: Bohuš Nemčovič Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Michaela Prokešová, Ph.D., Department of Probability and Mathematical Statistics Abstract: In this work we deal with estimating the intensity matrices of continu- ous Markov chains in the case of complete observation and observation at selected discrete time points. To obtain an estimate we use the maximum likelihood met- hod. In the second chapter we first introduce the general EM algorithm and then adjust it for finding the intensity matrix estimate based on observations at disc- rete time points. In the last chapter we will illustrate the impact of the discrete step size on the quality of intensity matrix estimate. Keywords: Markov chains, intensity matrix, maximum likelihood estimation, EM algorithm 1
Modifications of stochastic objects
Kadlec, Karel ; Štěpán, Josef (advisor) ; Dostál, Petr (referee)
In this thesis, we are concerned with the modifications of the stochastic processes and the random probability measures. First chapter is devoted to modifications of the stochastic process to the space of continuous functions, modifications of submartingale to the set of right-continuous with finite left-hand limits functions and separable modifications of stochastic process. In the second chapter is the attention on the regularization of random probability measure in Markov kernel focused. In particular, we work with random probability measures on the Borel subset of the Polish space, or Radon separable topological space.
Optimal control of Lévy-driven stochastic equations in Hilbert spaces
Kadlec, Karel ; Maslowski, Bohdan (advisor) ; Riedle, Markus (referee) ; Beneš, Viktor (referee)
Controlled linear stochastic evolution equations driven by Lévy processes are studied in the Hilbert space setting. The control operator may be unbounded which makes the results obtained in the abstract setting applicable to parabolic SPDEs with boundary or point control. The first part contains some preliminary technical results, notably a version of Itô formula which is applicable to weak/mild solutions of controlled equations. In the second part, the ergodic control problem is solved: The feedback form of the optimal control and the formula for the optimal cost are found. The control problem is solved in the mean-value sense and, under selective conditions, in the pathwise sense. As examples, various parabolic type controlled SPDEs are studied. 1
Estimation in continuous time Markov chains
Nemčovič, Bohuš ; Prokešová, Michaela (advisor) ; Kadlec, Karel (referee)
Title: Estimation in continuous time Markov chains Author: Bohuš Nemčovič Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Michaela Prokešová, Ph.D., Department of Probability and Mathematical Statistics Abstract: In this work we deal with estimating the intensity matrices of continu- ous Markov chains in the case of complete observation and observation at selected discrete time points. To obtain an estimate we use the maximum likelihood met- hod. In the second chapter we first introduce the general EM algorithm and then adjust it for finding the intensity matrix estimate based on observations at disc- rete time points. In the last chapter we will illustrate the impact of the discrete step size on the quality of intensity matrix estimate. Keywords: Markov chains, intensity matrix, maximum likelihood estimation, EM algorithm 1
Applications of Markov chains
Berdák, Vladimír ; Beneš, Viktor (advisor) ; Kadlec, Karel (referee)
The goal of the thesis is the use of Markov chains and applying them to algorithms of the method Monte Carlo. Necessary theory of Markov chains is introduced and we are aiming to understand stationary distribution. Among MCMC methods the thesis is focused on Gibbs sampler which we apply to the hard-core model. We subsequently simulate distribution of ones and zeros on vertices of a graph. Statistical characteristics of the number of ones are estimated from realizations of MCMC and presented in figures.
Modifications of stochastic objects
Kadlec, Karel ; Štěpán, Josef (advisor) ; Dostál, Petr (referee)
In this thesis, we are concerned with the modifications of the stochastic processes and the random probability measures. First chapter is devoted to modifications of the stochastic process to the space of continuous functions, modifications of submartingale to the set of right-continuous with finite left-hand limits functions and separable modifications of stochastic process. In the second chapter is the attention on the regularization of random probability measure in Markov kernel focused. In particular, we work with random probability measures on the Borel subset of the Polish space, or Radon separable topological space.

See also: similar author names
2 Kadlec, Kryštof
Interested in being notified about new results for this query?
Subscribe to the RSS feed.