National Repository of Grey Literature 9,203 records found  1 - 10nextend  jump to record: Search took 0.42 seconds. 

Conductivity of carbon materials for alternative energy sources
Tichý, J. ; Novák, V. ; Barath, Peter
Object of this work was prepared electrodes with carbon materials and investigate their electrical properties.

HYDROGENATION PROPERTIES OF BALL-MILLED Mg-Ti-C-Zr COMPOSITE
Král, Lubomír ; Čermák, Jiří ; Roupcová, Pavla
The hydrogen storage properties of ball-milled Mg-Ti-Zr-C composite (1.8 wt.% Ti, 1.9 wt.% Zr and 0.2 wt.% C) were investigated. It has been previously shown, that the addition of Ti, Zr and C improved its storage properties. This beneficial effect of additives upon hydrogen storage properties can be explained by catalysis by the particles rich in Ti or Zr located on the surface of Mg grains. They provide effective pathways for the hydrogen diffusion into the MgH2. The morphological and microstructural characteristics were investigated by scanning electron microscopy and by X-ray diffraction. The hydrogen sorption was measured by Sieverts method using Setaram PCT-Pro device. In this paper, sorption behaviour of the composite after ball-milling and after aging on the air was compared. The ball-milled composite adsorbed 3.5 wt.% H2 within 10 min at 623 K. However, hydrogen storage capacity of the composite aged on the air for 7 months remarkably decreased: The aged composite adsorbed within 10 min only 2 wt.% H2 at 623 K and the sorption capacity decreased from 4.7 wt.% H2 to 2.1 wt.% H2.

INFLUENCE OF LASER CUTTING AND PUNCHING ON MAGNETIC PROPERTIES\nOF ELECTRICAL STEEL M470-50A
Bulín, Tomáš ; Švábenská, Eva ; Hapla, Miroslav ; Ondrůšek, Č. ; Schneeweiss, Oldřich
Electrical steel M470-50A belongs to the most often used materials in electrical machines. Due to this fact, it is desirable to know the magnetic parameters after processing raw sheets into the required shape. Basic parameters of mechanical, electrical, and magnetic properties of the sheets are usually obtained from the producer but the magnetic properties are changing in dependence on additional machining processes. The aim of this study is to describe changes in parameters of magnetic behavior after punching, laser and spark cutting of the original sheets. The basic information of structure was obtained by optical and scanning electron microscopy. The magnetic parameters were acquired from the measuring of magnetic hysteresis loops in dependence on saturation fields and frequencies. The results are discussed from the point of view of applied\ncutting technology with the aim to obtain the best magnetic parameters and consequently a higher efficiency of the final product. Results can be used as input parameters in simulation of the electrical machine.

Changes in structure and phase composition in the surface of tram rail
Švábenská, Eva ; Roupcová, Pavla ; Schneeweiss, Oldřich
We have investigated structure and phase composition of surface layer of tram rails after long time running and the results were compared with those obtained on the original part of material. Changes due to effects of severe plastic deformation together with thermal shocks by friction process were expected. The information about structure and phase composition was obtained by optical and scanning electron microscopy, X-Ray Powder Diffraction, Mössbauer Spectroscopy and Glow Discharge Emission Spectroscopy (GDOES) and this was completed by microhardness measurements. The results show that the surface layer in comparison with the original material exhibits important changes in grain structure, an increase in microhardness and high content of iron oxide and hydrooxides. According to the depth profile of the chemical composition measured by GDOES there is an increase in carbon content in the surface layer which can be effect of up-hill diffusion.

STRAIN ENGINEERING OF THE ELECTRONIC STRUCTURE OF 2D MATERIALS
del Corro, Elena ; Peňa-Alvarez, M. ; Morales-García, A. ; Bouša, Milan ; Řáhová, Jaroslava ; Kavan, Ladislav ; Kalbáč, Martin ; Frank, Otakar
The research on graphene has attracted much attention since its first successful preparation in 2004. It possesses many unique properties, such as an extreme stiffness and strength, high electron mobility, ballistic transport even at room temperature, superior thermal conductivity and many others. The affection for graphene was followed swiftly by a keen interest in other two dimensional materials like transition metal dichalcogenides. As has been predicted and in part proven experimentally, the electronic properties of these materials can be modified by various means. The most common ones include covalent or non-covalent chemistry, electrochemical, gate or atomic doping, or quantum confinement. None of these methods has proven universal enough in terms of the devices' characteristics or scalability. However, another approach is known mechanical strain/stress, but experiments in that direction are scarce, in spite of their high promises.\nThe primary challenge consists in the understanding of the mechanical properties of 2D materials and in the ability to quantify the lattice deformation. Several techniques can be then used to apply strain to the specimens and thus to induce changes in their electronic structure. We will review their basic concepts and some of the examples so far documented experimentally and/or theoretically.

ELECTRON BEAM REMELTING OF PLASMA SPRAYED ALUMINA COATINGS
Matějíček, Jiří ; Veverka, J. ; Čížek, J. ; Kouřil, J.
Plasma sprayed alumina coatings find numerous applications in various fields, where they enhance the properties of the base material. Examples include thermal barriers, wear resistance, electrical insulation, and diffusion and corrosion barriers. A typical structure of plasma sprayed coatings, containing a multitude of voids and imperfectly bonded interfaces, gives them unique properties - particularly low thermal conductivity, high strain tolerance, etc. However, for certain applications such as permeation barriers or wear resistance, these voids may be detrimental.\nThis paper reports on the first experiments with remelting of plasma sprayed alumina coatings by electron beam technology, with the purpose of densifying the coatings and thereby eliminating the voids. Throughout the study, several parameters of the e-beam device were varied - beam current, traverse velocity and number of passes. The treated coatings were observed by light and electron microscopy and the thickness, structure and surface morphology of the remelted layer were determined and correlated with the process parameters. Based on the first series of experiments, the e-beam settings leading to dense and smooth remelted layer of sufficient thickness were obtained. In this layer, a change of phase composition and a marked increase in hardness were observed.\n

Plasma spraying from liquids: plasma liquid interaction and coating build up
Tesař, Tomáš ; Mušálek, Radek ; Medřický, Jan ; Lukáč, František
Plasma spraying from liquid feedstocks is a rapidly developing field of thermal spraying since the coatings prepared from liquids exhibit some unique features, such as high hardness, thermal shock resistance or low thermal and electric conductivity. The key factor influencing the final coating character and properties is the input material which may be in the form of a suspension or a solution. Parameters of the selected suspension (solids concentration, viscosity, surface tension, chemical composition, etc.) or solution (concentration, etc.) determine its interaction with the plasma jet which strongly influences the coating buildup. This proceeding introduces the problematics of the interaction between the liquid feedstock material with the plasma jet and presents the way of evaluation of the coating buildup.

Methodology for determining the relevant material characteristics of historical building materials for the restoration intervention
Slížková, Zuzana ; Frankeová, Dita ; Tišlová, R.
The aim of this metolodogy is to present a recommended list of material properties which have to be identified and evaluated within material survey of historical momuments.\n\n
Fulltext: content.csg - Download fulltextPDF
Plný tet: 0457225_2015_Slizkova_et_al_Metodika_urceni_rozhodnych_materialovych_charakteristik_historickych_stavebnich_materialu_pro_planovany_restauratorsky_zasah - Download fulltextPDF


Erosion protection of slopes from assignment to implementation
Konopecká, Vladislava ; Janeček, Miloslav (advisor) ; Kalibová, Jana (referee)
The thesis is following up on the findings to the issues presented in the Bachelor's thesis, where they were described mainly the methods and materials used to secure the slopes of pipeline, will address not only the final solution method of protection against erosion of the slopes, but in particular all conditioning influences such as the topography, the type and quality of rock and soil in the area of the building, surrounding buildings, and last but not least property relations that can significantly affect the design solution in terms of difficulty of implementation, durability, aesthetics and economic performance of the resulting construction works. Alpha-Omega of the initial phase is the analysis and the interdependence of the issues just for land consolidation, anti-erosion measures, construction procedures in accordance with the geology of the chosen territory and the intended realization of the construction project. The evaluation of the risks associated with this issue on the basis of field investigation, examination with a valid legal legislation, SWOT analysis will be ended.