National Repository of Grey Literature 8 records found  Search took 0.00 seconds. 
Simulation of Fluid Circulation Using Modern Computational Methods
Palček, Peter ; Chudý, Peter (referee) ; Sehnalová, Pavla (advisor)
In this bachelor's thesis a model problem of a fluid flow simulation is solved using TKSL system. The thesis describes the equations defining the fluid flow, their transformation into the form suitable for solution, their calculation using the basic schemes of finite difference method in TKSL system and comparation of this solution with one using explicit MacCormack method.
Analysis of the turbine housing design in terms of heat leakage
Diakov, Jakub ; Lošák, Petr (referee) ; Vlach, Radek (advisor)
This diploma thesis deals with the judgment of usability of the topology optimisation of the Ansys Workbench program combined with thermo-mechanical fatigue and the non-linear material model of a turbine housing. The first part of the thesis includes research which serves for the purpose of understanding and for theoretical support of the practical part. The research part of the thesis at first gives reasons for the choice of the main aim of the thesis. The main aim of the thesis is the decrease of heat leak from the exhaust fumes due to the reason of the sooner combustion products processing and lower emissions production. The second chapter of the research analyses the construction and function of a turbocharger from the perspective of the geometry of the components and also from the perspective of the production and use of the components. The following chapter deals with the analysis of the energetic and thermal balance of the turbocharger. This chapter mentions the fundamental simplifications of the calculation problem and these simplifications are applied in the practical example. Next, the chapter analyses the thermo-mechanical fatigue, classification of the areas of fatigue and it also analyses the approaches used for the life expectancy predictions. The chapter of the research part deals with the selected areas of calculation and their theoretical basis. The last chapter analyses the fluid mechanics and the selected methods of the topology optimisation which are available in the selected calculation program. After the research part of the thesis, there follows the practical part which discusses a multiphysical example of the turbine housing optimisation from the perspective of heat leak and of the turbine housing being exposed to the thermo-mechanical fatigue. The practical part which is composed of several steps is based on the CFD analysis and this analysis is used for the purpose of gaining thermal conditions in order to calculate the transient thermal analysis. Out of the outcomes of the coupled transient thermal analysis, there is used the spatial temperature field which as a result of the expansivity of the material causes non-homogenous stress on the turbine housing. The practical part has an individual chapter dedicated to the usability of the topological optimisation in different types of tasks. One of the parts of this chapter includes is a suggestion of the methodology for determination of voltage limitation for the selected type of topological optimisation. The penultimate chapter in the practical part is dedicated to the topological optimisation of the turbine housing on the basis of the preceding voltage analysis and determined limitation. The last chapter includes performed validation of the optimised shape of the housing after the geometry is adjusted. The validation is performed from the perspective of steady state temperature of the output combustion products, of speed of heating of the optimised geometry and from the perspective of the comparison of the life expectancy determined in the thermo-mechanical fatigue. At the end of thesis, there are included conclusions discussed and suggested, scope for improvement and possibilities for continuation of further research.
Study of Inertial Particle Separator in a typical turboprop engine
Skála, Adam ; Doupník, Petr (referee) ; Popela, Robert (advisor)
This thesis focuses on ingestion of foreign objects into standard turboprop engine GE H80 situated in aircraft Let L-410 Turbolet. Aim of this study is to create methodology of numerical simulation of particle movement inside the engine, which could be used during design process of Inertial Particle Separator device. Thesis consists of backward-facing step benchmark study which validates used methodology. Second part describes flow field calculation and numerical setup. The last part is dedicated to particle tracking analysis. Simulated trajectories are visually investigated, and coordinates of particle impacts at 1st rotor of a compressor are correlated to position of real observed damage.
Bladeless fan cooling module
Šišpera, Adam ; Vacula, Jiří (referee) ; Bazala, Jiří (advisor)
Tato diplomová práce se zaměřuje na prozkoumání možností implementace bezlopatkového modulu ventilátoru založeného na Coanda efektu v chladícím systému osobního vozidla. Jejím cílem je prozkoumat proveditelnost takového řešení, jeho provozní charakteristiky a stanovit soubor doporučení pro návrh konkrétního designu. Vhodný chladící modul je navržen, následně hlouběji testován a jeho funkčnost je ověřena také reálným experimentem.
Numerical simulation of oil flow in bearing housing
Zogata, Filip ; Prokop, Aleš (referee) ; Řehák, Kamil (advisor)
This thesis is concerned with the development of a computational model of the bearing node, since in the development of a synchronous generator, great emphasis is placed on the proper design of the bearing node, as this complex component has a direct effect on the overall efficiency of the generator. A large number of engineering experiments need to be used to test on the physical model, but it is also necessary to test using the numerical model, as the production of the prototype itself for testing is very costly, and therefore it is advisable to verify the prototype itself before production by a series of numerical simulations. Another important feature is the possibility to investigate even unfavourable or even extreme conditions, which are already very difficult, sometimes impossible, to test physically in the laboratory, and these numerical simulations can be divided according to several parameters, but in the field of bearing nodes we mainly encounter structural, dynamic, temperature or flow problems. This thesis in particular is focused on establishing a basic overview of computational fluid dynamics in the oil flow domain, while this knowledge is used in practice, as another objective is to develop a numerical model of lubrication of the aforementioned bearing node. However, this is a very complex problem, and therefore a study is first carried out to investigate the key components, and only by gradually adding different elements is the numerical model created in the Particleworks software environment, while a sensitivity study is carried out focusing on particle size. Subsequently, the individual partial results are summarized in the conclusion of this paper.
Analysis of the turbine housing design in terms of heat leakage
Diakov, Jakub ; Lošák, Petr (referee) ; Vlach, Radek (advisor)
This diploma thesis deals with the judgment of usability of the topology optimisation of the Ansys Workbench program combined with thermo-mechanical fatigue and the non-linear material model of a turbine housing. The first part of the thesis includes research which serves for the purpose of understanding and for theoretical support of the practical part. The research part of the thesis at first gives reasons for the choice of the main aim of the thesis. The main aim of the thesis is the decrease of heat leak from the exhaust fumes due to the reason of the sooner combustion products processing and lower emissions production. The second chapter of the research analyses the construction and function of a turbocharger from the perspective of the geometry of the components and also from the perspective of the production and use of the components. The following chapter deals with the analysis of the energetic and thermal balance of the turbocharger. This chapter mentions the fundamental simplifications of the calculation problem and these simplifications are applied in the practical example. Next, the chapter analyses the thermo-mechanical fatigue, classification of the areas of fatigue and it also analyses the approaches used for the life expectancy predictions. The chapter of the research part deals with the selected areas of calculation and their theoretical basis. The last chapter analyses the fluid mechanics and the selected methods of the topology optimisation which are available in the selected calculation program. After the research part of the thesis, there follows the practical part which discusses a multiphysical example of the turbine housing optimisation from the perspective of heat leak and of the turbine housing being exposed to the thermo-mechanical fatigue. The practical part which is composed of several steps is based on the CFD analysis and this analysis is used for the purpose of gaining thermal conditions in order to calculate the transient thermal analysis. Out of the outcomes of the coupled transient thermal analysis, there is used the spatial temperature field which as a result of the expansivity of the material causes non-homogenous stress on the turbine housing. The practical part has an individual chapter dedicated to the usability of the topological optimisation in different types of tasks. One of the parts of this chapter includes is a suggestion of the methodology for determination of voltage limitation for the selected type of topological optimisation. The penultimate chapter in the practical part is dedicated to the topological optimisation of the turbine housing on the basis of the preceding voltage analysis and determined limitation. The last chapter includes performed validation of the optimised shape of the housing after the geometry is adjusted. The validation is performed from the perspective of steady state temperature of the output combustion products, of speed of heating of the optimised geometry and from the perspective of the comparison of the life expectancy determined in the thermo-mechanical fatigue. At the end of thesis, there are included conclusions discussed and suggested, scope for improvement and possibilities for continuation of further research.
Study of Inertial Particle Separator in a typical turboprop engine
Skála, Adam ; Doupník, Petr (referee) ; Popela, Robert (advisor)
This thesis focuses on ingestion of foreign objects into standard turboprop engine GE H80 situated in aircraft Let L-410 Turbolet. Aim of this study is to create methodology of numerical simulation of particle movement inside the engine, which could be used during design process of Inertial Particle Separator device. Thesis consists of backward-facing step benchmark study which validates used methodology. Second part describes flow field calculation and numerical setup. The last part is dedicated to particle tracking analysis. Simulated trajectories are visually investigated, and coordinates of particle impacts at 1st rotor of a compressor are correlated to position of real observed damage.
Simulation of Fluid Circulation Using Modern Computational Methods
Palček, Peter ; Chudý, Peter (referee) ; Sehnalová, Pavla (advisor)
In this bachelor's thesis a model problem of a fluid flow simulation is solved using TKSL system. The thesis describes the equations defining the fluid flow, their transformation into the form suitable for solution, their calculation using the basic schemes of finite difference method in TKSL system and comparation of this solution with one using explicit MacCormack method.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.