National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Růst Mycobacterium smegmatis na agarovém médiu a agarovém médiu pokrytém celofánovou folií - morfologická a proteomová studie
Ramaniuk, Volha ; Weiser, Jaroslav (advisor) ; Beranová, Jana (referee)
Biofilm formation is one of the most common bacterial survival strategies. Majority of bacterial species are able to form these three-dimensional structures, including pathogens like Mycobacterium tuberculosis. Representatives of Mycobacterium genus widely occur in the nature, although they can cause serious problems when they appear in medical equipment and artificial replacements of the human body. Non-pathogenic Mycobacterium smegmatis mc2 155 was used as a model organism in our experiments. We investigated morphology of the three- and six-day-old colonies (in fact biofilms) on agar and agar covered with cellophane using Stereo microscope and Scanning Electron Microscope. We found that a type of surface as well as a carbon source has a great influence on the morphology of the M. smegmatis colonies. We isolated proteomes from the agar and cellophane cultures and from planktonic culture. Two-dimensional electrophoresis was used as the main proteomic method. Proteomic data were analyzed using PDQuest software. Then the sets of proteins detected by qualitative and quantitative analyses were compared using Venn diagrams. As a result, we recognized 7 unique proteins that might be specific for recognition and adhesion of bacteria to the cellophane, no unique protein in agar proteome and 46 unique...
Proteomics as a tool for understanding molecular mechanisms of human diseases
Pospíšilová, Jana
Proteomics is a set of analytical methods which enable qualitative and quantitative characterization of the proteome. Expression proteomics quantitatively compares proteomes of cells, tissues, body fluids or other biological materials to find differencies in protein expression and, based on these differencies, to describe the biological processes occuring in investigated organisms. An initial material for expression proteomic studies are complex mixtures containing thousands of proteins, which are analyzed using separation (electrophoretic and chromatographic) methods, and identified, possibly quantified using mass spectrometry. The aim of this Thesis is to demonstrate the application of the tools of expression proteomics in solving diverse challenges in biomedicine. We employed various proteomic approaches and tools for studying molecular mechanisms of human diseases using pacient biological samples, or a model organism and a cell culture. We were conducting three different research projects, namely: A quest for potencial molecular targets for selective elimination of TRAIL-resistant mantle cell lymphoma cells; Investigation of molecular mechanisms of heart failure using a rat model of the disease induced by volume overload; and Searching for diagnostically usable serum biomarkers of ovarian...
Proteomics as a tool for understanding molecular mechanisms of human diseases
Pospíšilová, Jana ; Petrák, Jiří (advisor) ; Šulc, Miroslav (referee) ; Kovářová, Hana (referee)
Proteomics is a set of analytical methods which enable qualitative and quantitative characterization of the proteome. Expression proteomics quantitatively compares proteomes of cells, tissues, body fluids or other biological materials to find differencies in protein expression and, based on these differencies, to describe the biological processes occuring in investigated organisms. An initial material for expression proteomic studies are complex mixtures containing thousands of proteins, which are analyzed using separation (electrophoretic and chromatographic) methods, and identified, possibly quantified using mass spectrometry. The aim of this Thesis is to demonstrate the application of the tools of expression proteomics in solving diverse challenges in biomedicine. We employed various proteomic approaches and tools for studying molecular mechanisms of human diseases using pacient biological samples, or a model organism and a cell culture. We were conducting three different research projects, namely: A quest for potencial molecular targets for selective elimination of TRAIL-resistant mantle cell lymphoma cells; Investigation of molecular mechanisms of heart failure using a rat model of the disease induced by volume overload; and Searching for diagnostically usable serum biomarkers of ovarian...
Proteomics as a tool for understanding molecular mechanisms of human diseases
Pospíšilová, Jana ; Petrák, Jiří (advisor) ; Šulc, Miroslav (referee) ; Kovářová, Hana (referee)
Proteomics is a set of analytical methods which enable qualitative and quantitative characterization of the proteome. Expression proteomics quantitatively compares proteomes of cells, tissues, body fluids or other biological materials to find differencies in protein expression and, based on these differencies, to describe the biological processes occuring in investigated organisms. An initial material for expression proteomic studies are complex mixtures containing thousands of proteins, which are analyzed using separation (electrophoretic and chromatographic) methods, and identified, possibly quantified using mass spectrometry. The aim of this Thesis is to demonstrate the application of the tools of expression proteomics in solving diverse challenges in biomedicine. We employed various proteomic approaches and tools for studying molecular mechanisms of human diseases using pacient biological samples, or a model organism and a cell culture. We were conducting three different research projects, namely: A quest for potencial molecular targets for selective elimination of TRAIL-resistant mantle cell lymphoma cells; Investigation of molecular mechanisms of heart failure using a rat model of the disease induced by volume overload; and Searching for diagnostically usable serum biomarkers of ovarian...
Proteomics as a tool for understanding molecular mechanisms of human diseases
Pospíšilová, Jana
Proteomics is a set of analytical methods which enable qualitative and quantitative characterization of the proteome. Expression proteomics quantitatively compares proteomes of cells, tissues, body fluids or other biological materials to find differencies in protein expression and, based on these differencies, to describe the biological processes occuring in investigated organisms. An initial material for expression proteomic studies are complex mixtures containing thousands of proteins, which are analyzed using separation (electrophoretic and chromatographic) methods, and identified, possibly quantified using mass spectrometry. The aim of this Thesis is to demonstrate the application of the tools of expression proteomics in solving diverse challenges in biomedicine. We employed various proteomic approaches and tools for studying molecular mechanisms of human diseases using pacient biological samples, or a model organism and a cell culture. We were conducting three different research projects, namely: A quest for potencial molecular targets for selective elimination of TRAIL-resistant mantle cell lymphoma cells; Investigation of molecular mechanisms of heart failure using a rat model of the disease induced by volume overload; and Searching for diagnostically usable serum biomarkers of ovarian...
The proteomic study of abiotic stress of plants.
Barabášová, Kamila ; Podlipná, Radka (advisor) ; Smrček, Stanislav (referee)
Keywords: Arabidopsis thaliana, phytoremediation, abiotic stress, ibuprofene, doxorubicin, two-dimensional electrophoresis Nowadays, develop of the pharmaceutical industry is very fast. Reason of this trend is ever-increasing number of diseases, lifestyle and still increasing demand for the drugs. With this trend growing interest in the analysis of the residues of pharmaceuticals in the environment which is result of incomplete wastewater treatment. This diploma thesis is studying effect of cytostatic drugs, specifically doxorubicin and one of the most widely used analgesics - ibuprofen, at the proteome level of the model plant Arabidopsis thaliana. Proteins isolated from plants exposed to the drugs were separated by two-dimensional electrophoresis. Comparing of protein maps by PDQest program (Bio-Rad, USA) was found several proteins whose expression was affected by the presence of drugs in the culture medium. Selected proteins were identified by LC - MS / MS.
Růst Mycobacterium smegmatis na agarovém médiu a agarovém médiu pokrytém celofánovou folií - morfologická a proteomová studie
Ramaniuk, Volha ; Weiser, Jaroslav (advisor) ; Beranová, Jana (referee)
Biofilm formation is one of the most common bacterial survival strategies. Majority of bacterial species are able to form these three-dimensional structures, including pathogens like Mycobacterium tuberculosis. Representatives of Mycobacterium genus widely occur in the nature, although they can cause serious problems when they appear in medical equipment and artificial replacements of the human body. Non-pathogenic Mycobacterium smegmatis mc2 155 was used as a model organism in our experiments. We investigated morphology of the three- and six-day-old colonies (in fact biofilms) on agar and agar covered with cellophane using Stereo microscope and Scanning Electron Microscope. We found that a type of surface as well as a carbon source has a great influence on the morphology of the M. smegmatis colonies. We isolated proteomes from the agar and cellophane cultures and from planktonic culture. Two-dimensional electrophoresis was used as the main proteomic method. Proteomic data were analyzed using PDQuest software. Then the sets of proteins detected by qualitative and quantitative analyses were compared using Venn diagrams. As a result, we recognized 7 unique proteins that might be specific for recognition and adhesion of bacteria to the cellophane, no unique protein in agar proteome and 46 unique...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.