National Repository of Grey Literature 10 records found  Search took 0.00 seconds. 
Changes in embryonal programing induced by diabetes mellitus
Landsmann, Lukáš ; Pavlínková, Gabriela (advisor) ; Tlapáková, Tereza (referee)
Embryonic development is sensitive to environmental changes. These changes may lead to changes in the embryonic programming. Changes in programming embryos can occur due to inadequate nutrition, stress, treatment with chemicals and also due to diabetes. Epigenome reacts sensitively to environmental factors regulating gene transcriptional activity. Changes in the epigenome lead to a changes in gene expression, which can have a negative impact on the physiology and metabolism of organism. Maternal diabetes may alter embryonic and fetal development and may result in diabetic embryopathy. Furthermore, maternal diabetic enviromental plays an important role in the predisposition of offspring to a number of chronic diseases later in life. The offspring of diabetic pregnancies demonstrate differences in metabolic, cardiovascular, and inflammatory variables, compared to the offspring of nondiabetic mothers. This thesis summarizes the genetic and epigenetic factors involved in the development of diabetic embryopathy and in the embryonic programming. Key words: Diabetes mellitus, diabetic embryopathy, transcriptional regulation, genetic and epigenetic factors , embryonic programming, genome
Functional role of Islet1 in pancreatic development
Malfatti, Jessica ; Pavlínková, Gabriela (advisor) ; Krausová, Michaela (referee)
1 Abstract Diabetes mellitus is characterized by the dysfunction and reduction of insulin-producing cells, resulting in hyperglycemia, which in long term harms the organism. For future therapy, it is crucial to understand the function of various factors participating in the differentiation and maturation of endocrine pancreatic cells. The aim of this study was to unravel the functional role of ISL1 during the development of the pancreas. ISL1 is expressed in all endocrine cells of the islets of Langerhansbut its function remains unclear, especially during early pancreatogenesis. As the global deletion of this gene is embryonically lethal, we used the tissue specific deletion of Isl1 in Neurod1 possitive cells using the Cre-loxP system. In this work we studied the effect of this deletion on the structure of islets of Langerhans, the formation of endocrine cell types and relative expression of genes during early pancreatic development. A defective achitecture of islets together with postnatal absence of α-cells was found in the Isl1 deletion mutant. Also, the expression of genes important for the specification of α-cell lineage and their subsequent function was decreased. The secondary outcome was the optimalization of a protocol for effective sorting of endocrine cells using fluorescent flow cytometry, which...
Characterization of the Caenorhabditis elegans pop-1 gene
Jakšová, Soňa ; Vacík, Tomáš (advisor) ; Macůrková, Marie (referee)
The TCF/LEF transcriptional factors regulate the target genes of the Wnt signalling pathway - one of the key signalling mechanisms involved in development of multicellular organisms. The TCF/LEF genes produce a number of various protein isoforms, which consequently leads to a great functional diversity of the TCF/LEF proteins. In this diploma project we focused on the Caenorhabditis elegans gene pop-1, the ortholog of the TCF/LEF genes, whose isoforms have not been studied yet. Using the Northern blot analysis we tried to identify alternative isoforms of the pop-1 mRNA in C. elegans. Using quantitative RT-PCR we also analyzed the pop-1 mRNA levels during seven developmental stages of C. elegans. Further, we also determined the expression profile of two important partners of pop-1, the bar-1 and sys-1 genes, whose protein products function as transcriptional co-activators. Key words: canonical Wnt signaling pathway, TCF/LEF transcription factors, Caenorhabditis elegans, pop-1
Characterization of the Caenorhabditis elegans pop-1 gene
Jakšová, Soňa ; Vacík, Tomáš (advisor) ; Macůrková, Marie (referee)
The TCF/LEF transcriptional factors regulate the target genes of the Wnt signalling pathway - one of the key signalling mechanisms involved in development of multicellular organisms. The TCF/LEF genes produce a number of various protein isoforms, which consequently leads to a great functional diversity of the TCF/LEF proteins. In this diploma project we focused on the Caenorhabditis elegans gene pop-1, the ortholog of the TCF/LEF genes, whose isoforms have not been studied yet. Using the Northern blot analysis we tried to identify alternative isoforms of the pop-1 mRNA in C. elegans. Using quantitative RT-PCR we also analyzed the pop-1 mRNA levels during seven developmental stages of C. elegans. Further, we also determined the expression profile of two important partners of pop-1, the bar-1 and sys-1 genes, whose protein products function as transcriptional co-activators. Key words: canonical Wnt signaling pathway, TCF/LEF transcription factors, Caenorhabditis elegans, pop-1
Development and function of endocrine cells of the pancreas
Hamplová, Adéla ; Pavlínková, Gabriela (advisor) ; Berková, Zuzana (referee)
Diabetes mellitus affects nearly 300 million people in the world. The development of diabetes is caused by dysfunction or by reduction of insulin-producing β-cells that are part of the endocrine pancreas. Therefore, the most critical step for understanding the pathophysiology of diabetes and for restoring lost β cells is the identification of molecular cues that specify the cellular phenotype in the pancreas. This work is based on the hypothesis that the transcription factor NEUROD1 is a key factor for the development of the pancreas and for the maintenance of endocrine tissue function. Neurod1 conditional KO mutants (Neurod1CKO) were generated using the Cre-loxP system by crossing floxed Neurod1 mice with Isl1-Cre line. Immunohistochemical analyses of the pancreas at embryonic day 17.5 and postnatal day 0 showed that the deletion of Neurod1 negatively affected the development, organization of endocrine tissue, and total mass of pancreatic endocrine cells. To better understand molecular changes, quantitative PCR was used to analyse mRNA expression in the developing pancreas at the age of embryonic day 14.5 and postnatal day 1. Genes important for the development and function of the pancreas have been selected for the study of expression changes. These analyses showed changes in expression of genes...
Characterization of the Caenorhabditis elegans pop-1 gene
Jakšová, Soňa ; Vacík, Tomáš (advisor) ; Cmarko, Dušan (referee)
The human proteom diversity is caused by the ability of a single gene locus to encode more protein isoforms. The TCF/LEF genes produce a broad spectrum of protein variants, which consequently leads to a great functional diversity of the TCF/LEF proteins. The TCF/LEF transcriptional factors regulate the canonical Wnt signaling target genes. In this diploma project we focused on the Caenorhabditis elegans gene pop-1, the ortholog of the TCF/LEF genes. Using the Northern blot analysis we tried to identify alternative isoforms of the pop-1 mRNA in C. elegans. Using quantitative RT-PCR we also analyzed the pop-1 mRNA levels. Key words: canonical Wnt signaling pathway, TCF/LEF transcription factors, Caenorhabditis elegans, pop-1
Transcriptional regulation in the development of neurosensory cells in the inner ear
Vochyánová, Simona ; Pavlínková, Gabriela (advisor) ; Schierová, Michaela (referee)
To understand the pathophysiology of hearing loss, it is necessary to identify genes responsible for specification and differentiation of sensory cells and neurons from a common neurosensory progenitor. These factors include LIM-homeodomain transcription factor ISLET1, high-mobility group protein SOX2, and basic helix-loop-helix transcription factors ATOH1, NEUROG1 and NEUROD1. This study aims to map important factors in inner ear development and their interactions with specific focus on transcription factor NEUROD1 and its role in mouse neurosensory inner ear development and function. Key words: inner ear, transcriptional regulation, mouse model, targeted deletion, embryonal development, Neurod1
Multifunctional protein CTCF and its role in regulation of gene expression
Pokorná, Linda ; Vacík, Tomáš (advisor) ; Vopálenský, Václav (referee)
CTCF is a ubiquitously expressed nuclear protein that binds to DNA through its central zinc finger domain. Thousands of CTCF binding sites have been identified throughout the human genome at gene promoters, in intergenic regions or in non-coding sequences. CTCF can function either as a positive or as a negative regulator of gene expression and is also involved in creating and maintaining long-range chromosomal interactions. Various developmentally important genes have been shown to be regulated by CTCF and its malfunction is frequently associated with developmental defects or diseases. CTCF undergoes various posttranslational modifications such as phosphorylation or SUMOylation which also affect its function in the regulation of gene expression. Keywords: CTCF, three dimensional genome, cohesin, regulation of gene expression, insulation, HOX genes
Development and function of beta-cells
Hamplová, Adéla ; Pavlínková, Gabriela (advisor) ; Tlapáková, Tereza (referee)
Insulin producing β-cells are located in the endocrine pancreas. They are a part of pancreatic islets of Langerhans along with α-, β-, δ-, ε- a PP-cells producing glucagon, somatostatin, ghrelin and pancreatic polypeptide. Insulin regulates glucose uptake into cells and thus contributes to the regulation of energy metabolism. The development of β-cells as well as the development of the pancreas is a complex process. Developmental processes of proliferation, differentiation and total pancreatic organogenesis are best described in the mouse model. The developmental processes and pancreatic functions are regulated by a network of transcription factors. Pancreatic duodenal homeobox gene 1 is a transcription factor that is expressed in the precursors of endocrine, exocrine and ductal cells. Neurogenin 3 is expressed in precursors of the islets of Langerhans cells. Islet 1 regulates the formation of the islets of Langerhans as well as the pair domains of transcription factors 4 and 6, whose expression is later limited only to β-cells. Transcription factors Islet 1 and Neurod 1 regulate insulin production in β-cells. Mutations in transcription factors lead to the abnormal development and altered function of pancreatic cells, including β-cells. Diabetes mellitus is a disease resulting from defects in...
Changes in embryonal programing induced by diabetes mellitus
Landsmann, Lukáš ; Pavlínková, Gabriela (advisor) ; Tlapáková, Tereza (referee)
Embryonic development is sensitive to environmental changes. These changes may lead to changes in the embryonic programming. Changes in programming embryos can occur due to inadequate nutrition, stress, treatment with chemicals and also due to diabetes. Epigenome reacts sensitively to environmental factors regulating gene transcriptional activity. Changes in the epigenome lead to a changes in gene expression, which can have a negative impact on the physiology and metabolism of organism. Maternal diabetes may alter embryonic and fetal development and may result in diabetic embryopathy. Furthermore, maternal diabetic enviromental plays an important role in the predisposition of offspring to a number of chronic diseases later in life. The offspring of diabetic pregnancies demonstrate differences in metabolic, cardiovascular, and inflammatory variables, compared to the offspring of nondiabetic mothers. This thesis summarizes the genetic and epigenetic factors involved in the development of diabetic embryopathy and in the embryonic programming. Key words: Diabetes mellitus, diabetic embryopathy, transcriptional regulation, genetic and epigenetic factors , embryonic programming, genome

Interested in being notified about new results for this query?
Subscribe to the RSS feed.