National Repository of Grey Literature 28 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Role of NEUROD1 transcriptional network on the development and function of inner ear neurons
Merc, Veronika ; Pavlínková, Gabriela (advisor) ; Mašek, Jan (referee)
Identification of transcription factors involved in a complex network regulating the development of neurosensory cells in the inner ear is a key point for understanding the pathophysiology of hearing loss, development of new therapeutic tools, and for hearing loss prevention. The aim of this thesis was to elucidate the function of the transcription factor NEUROD1 in the development of the inner ear and sensory neurons. Using the Cre-loxP recombination system, a unique mouse model was created with tissue-specific deletion of Neurod1 in NEUROD1-Cre positive cells (Neurod1ST). In the inner ear, Neurod1 was deleted only in neurons permitting to identify the secondary effects of Neurod1 elimination in neurons on sensory cell development. We showed that neither the early development of the inner ear nor the formation of the statoacoustic ganglia was significantly affected by Neurod1 deletion. The primary consequence of the deletion was manifested by increased neuronal death due to apoptosis, which resulted in a reduced number of differentiated neurons in the inner ear. Spiral and vestibular ganglia were smaller in the mutants, and there was a number of neurons misplaced, indicating impaired migration. The cochlear sensory epithelium was shortened probably due to the reduced number of neurons within the...
The effect of maternal diabetes on embryonic cardiovascular development and fetal programing
Čerychová, Radka ; Pavlínková, Gabriela (advisor) ; Nováková, Olga (referee) ; Neckář, Jan (referee)
Maternal diabetes mellitus negatively affects embryonic development and increases the risk for congenital malformations. Besides direct teratogenicity, diabetic intrauterine milieu can predispose an individual to chronic diseases later in life, including cardiovascular diseases, obesity, and diabetes mellitus, in a process termed fetal programing. Molecular mechanisms of embryonic and fetal responses to maternal diabetes are still not fully elucidated. Using mouse model, we show that maternal diabetes induces gene expression changes in the hearts of developing embryos. The most significant changes in the expression of 11 selected genes were detected at the developmental stage associated with completion of cardiac septation, myocardial mass expansion, and increased insulin production in the embryonic pancreas. These affected genes encode products involved in the epithelial-to-mesenchymal transition, a crucial process in heart development. Using immunohistochemistry, we detected increased hypoxia in the diabetes-exposed hearts at the critical stage of cardiac development. Correspondingly to increased hypoxia, the expression of hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor A was increased in the heart of diabetes-exposed embryos. Based on our results indicating the...
Molecular mechanisms in diabetic embryopathy
Čerychová, Radka ; Pavlínková, Gabriela (advisor) ; Kolář, František (referee)
Diabetic embryopathy is one of many serious complications associated with diabetes. It is known that maternal diabetes increases the frequency of congenital defects up to ten times. The most common defects are cardiovascular and neural tube defects. Molecular mechanisms of diabetic embryopathy are still not known. This work contributes to elucidation of molecular processes leading to development of cardiovascular defects in diabetic embryopathy. This study is based on observation that maternal diabetes affects transcriptional regulation of hypoxia-inducible factor 1 (HIF-1) in developing embryo. To study the influence of maternal diabetes on HIF-1 signaling pathway, we used mouse model heterozygous for "knock-out" of Hif1α gene. Our analyses showed the negative combinational effects of maternal diabetes and Hif1α+/- genotype on embryonic development and increased risk of diabetic embryopathy. Histological analysis demonstrated the increased incidence of cardiovascular defects, particularly defects of interventricular septum and hypoplastic compact left ventricular wall in embryonic day (E) 14.5 Hif1α+/- embryos compared to wt littermates from the diabetic pregnancy. Using qPCR, we analyzed gene expression changes in the embryonic hearts at E9.5 and E10.5. We selected genes important for the...
Characterization of mice with constitutively active Wnt/beta-catenin signaling pathway in lens
Antošová, Barbora ; Kozmik, Zbyněk (advisor) ; Pavlínková, Gabriela (referee)
Lens development and differentiation are strictly regulated processes. Various disturbances of these processes can lead to vision-limiting pathologies. The vertebrate lens is composed of epithelial cells and terminally differentiated fiber cells. Differentiation of fiber cells is connected with expression of fiber cell specific proteins (such as crystallins), cell cycle exit, and finally with the degradation of cell nucleus and organelles. Wnt/β-catenin signaling plays important roles during early eye development as well as later during the lens differentiation. To investigate the consequences of constitutive activation of Wnt/β-catenin signaling in lens fiber cells transgenic mouse strain, called CLEF, was created. Constitutive activation of Wnt/β-catenin signaling in fiber cells of CLEF mouse is achieved by transgenic protein CLEF that contains C-terminal activation domain of β-catenin fused to the amino terminus of full-length protein Lef1. The expression of CLEF transgene is under the control of αA-crystallin promoter. As a result of constitutive activation of Wnt/β-catenin signaling in fiber cells, adult CLEF mice develop cataracts and microphthalmia, and the morphology of adult mutant lenses is disrupted. Transgenic CLEF mRNA is expressed starting from E13.5 and by E16.5 transgenic CLEF protein is...
The role of Pax6 transcription factor in mouse eye development
Žílová, Lucie ; Kozmík, Zbyněk (advisor) ; Krylov, Vladimír (referee) ; Pavlínková, Gabriela (referee)
The formation of the eye is a multistep process of complex morphogenetic events. It begins with the formation of the optic vesicle (OV) and its subsequent interaction with the overlying head surface ectoderm (SE). Reciprocal interaction between OV and SE evoke lens placode formation within the SE followed by coordinated invagination of both, the lens placode and OV. These events result in formation of lens, retina and retinal pigmented epithelium (RPE) with lens originating from the SE and retina/RPE originating from the OV. Early after the retinal domain is established, retinal progenitor cells start to differentiate in seven retinal cell types that are further stratified in the structure of the retina. The transcription factor Pax6 plays a pivotal role in eye formation in various animal species. In mammals, it is expressed from very early stages of eye development in OV and SE. As Pax6-/- mice are anopthalamic, with eye development arrested at OV/SE stage, much attention has been paid to elucidate the Pax6 function in different eye structures. However, whether and/or how Pax6 regulates the early signaling events leading to eye formation as well as the mechanism by which Pax6 regulates the differentiation of all retinal cell types is still only poorly understood. Using the mouse as a model, we...
Changes in embryonal programing induced by diabetes mellitus
Landsmann, Lukáš ; Pavlínková, Gabriela (advisor) ; Tlapáková, Tereza (referee)
Embryonic development is sensitive to environmental changes. These changes may lead to changes in the embryonic programming. Changes in programming embryos can occur due to inadequate nutrition, stress, treatment with chemicals and also due to diabetes. Epigenome reacts sensitively to environmental factors regulating gene transcriptional activity. Changes in the epigenome lead to a changes in gene expression, which can have a negative impact on the physiology and metabolism of organism. Maternal diabetes may alter embryonic and fetal development and may result in diabetic embryopathy. Furthermore, maternal diabetic enviromental plays an important role in the predisposition of offspring to a number of chronic diseases later in life. The offspring of diabetic pregnancies demonstrate differences in metabolic, cardiovascular, and inflammatory variables, compared to the offspring of nondiabetic mothers. This thesis summarizes the genetic and epigenetic factors involved in the development of diabetic embryopathy and in the embryonic programming. Key words: Diabetes mellitus, diabetic embryopathy, transcriptional regulation, genetic and epigenetic factors , embryonic programming, genome
Functional role of Islet1 in pancreatic development
Malfatti, Jessica ; Pavlínková, Gabriela (advisor) ; Krausová, Michaela (referee)
1 Abstract Diabetes mellitus is characterized by the dysfunction and reduction of insulin-producing cells, resulting in hyperglycemia, which in long term harms the organism. For future therapy, it is crucial to understand the function of various factors participating in the differentiation and maturation of endocrine pancreatic cells. The aim of this study was to unravel the functional role of ISL1 during the development of the pancreas. ISL1 is expressed in all endocrine cells of the islets of Langerhansbut its function remains unclear, especially during early pancreatogenesis. As the global deletion of this gene is embryonically lethal, we used the tissue specific deletion of Isl1 in Neurod1 possitive cells using the Cre-loxP system. In this work we studied the effect of this deletion on the structure of islets of Langerhans, the formation of endocrine cell types and relative expression of genes during early pancreatic development. A defective achitecture of islets together with postnatal absence of α-cells was found in the Isl1 deletion mutant. Also, the expression of genes important for the specification of α-cell lineage and their subsequent function was decreased. The secondary outcome was the optimalization of a protocol for effective sorting of endocrine cells using fluorescent flow cytometry, which...
Transcriptional regulation in the development of the cardiac sympathetic system
Matějková, Kateřina ; Pavlínková, Gabriela (advisor) ; Holzerová, Kristýna (referee)
To improve modern therapeutic and diagnostic methods, it is crucial to understand the development of the cardiac sympathetic system and to identify the genes involved in its regulation. Neural crest cells give rise to the sympathetic precursors that migrate towards the dorsal aorta. This migration is regulated by the NRP1/SEMA3A and neuregulin/ERBB signaling. The differentiation towards the sympathetic phenotype is regulated by transcriptional factor networks, including ASCL1, PHOX2A/B, GATA3, HAND2, HIF1A and ISL1. Next, neurons migrate to the final paravertebral position, which is regulated by the BDNF/TRKB signaling. The final step in the development of cardiac sympathetic neurons is the axon growth and guidance towards the heart. This is regulated by the NGF/TRKA and NRP1/SEMA3A signaling. This thesis aims to map current knowledge of different regulation pathways involved in the cardiac sympathetic development (especially in the mouse model) with emphasis on transcriptional factors. This type of information should help us better understand the pathophysiology of some cardiovascular diseases associated with the dysfunctional sympathetic system, such as arrhythmias, congestive heart failure or myocardial infarction, which remain to be main causes of death worldwide.
Functional role of SOX2 in inner ear neurosensory development
Dvořáková, Martina ; Pavlínková, Gabriela (advisor) ; Rohlena, Jakub (referee) ; Machoň, Ondřej (referee)
The main functional cells of the inner ear are neurons and sensory cells that are formed from a common embryonic epithelial neurosensory domain. Discovering genes important for specification and differentiation of sensory cells and neurons in the inner ear is a crucial basis for understanding the pathophysiology of hearing loss. Some of these factors are necessary not only for the inner ear but also for the development of other neurosensory systems such as the visual and olfactory system. The aim of this work was to reveal functions of transcription factor SOX2 in inner ear development by using mouse models with different conditional deletions of Sox2 gene. Sox2 gene was deleted by cre-loxP recombination. In Isl1-cre, Sox2 CKO mutant, reduced number of hair cells differentiated only in some inner ear organs (utricle, saccule and cochlear base) and not in others (cristae and cochlear apex). Early forming inner ear neurons in the vestibular ganglion and neurons innervating the cochlear base developed in these mutants but died by apoptosis due to the lack of neurotrophic support from sensory cells. Late forming neurons in the cochlear apex never formed. In Foxg1-cre, Sox2 CKO mutant, only rudimental ear with no sensory cells was formed. The initial formation of vestibular ganglion with peripheral and...
Role of ISL1 in development of neurosensory cells of inner ear
Vochyánová, Simona ; Pavlínková, Gabriela (advisor) ; Machoň, Ondřej (referee)
To understand the pathophysiology of hearing loss, it is necessary to identify genes responsible for embryonic development of neurosensory cells in the inner ear. The aim of this work is to clarify the role of LIM-homeodomain transcription factor ISL1 in the development of these cells. Using Cre-loxP recombination strategy, we generated a mouse line with time and site- specific deletion of Isl1 gene in NEUROD1-Cre expressing cells (Isl1 CKO). Although the early development of stato-acoustic ganglion was not affected by Isl1 deletion, at E14,5, we observed abnormalities in neuronal migration, formation of spiral ganglion and axon guidance in the Isl1 CKO cochlea. The length of the cochlear sensory epithelium was shortened by 20% as a consequence of lower proliferation activity of sensory precursor cells. Our results suggest that ISL1 is necessary for spiral ganglion formation and innervation of the Organ of Corti. Key words: transcription factor ISL1, neurons, Cre-loxP system, mouse model

National Repository of Grey Literature : 28 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.