National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Influence of Structure Directionality on Fatigue Properties of Formed Al Alloy.
Jíša, David ; Mazal, Pavel (referee) ; Liškutín, Petr (advisor)
The main goal of this diploma thesis is the examination of the influence of structure directionality on fatigue properties of formed aluminium alloy 6082/T6. The main attention is focused on the study of the influence of structure directionality on kinetics of short fatigue cracks growth. The measurement of short fatigue cracks growth was performed on cylindrical samples. The samples were made in two different directions; one parallel with the forming direction and second perpendicular to the forming direction. Servo hydraulic machine MTS 880 was used for the cyclic loading. The samples were cycled at two different constant stress amplitudes. Cyclic loading was systematically interrupted in order to measure the length of short cracks by a light microscope. Tensile tests, measuring of cycling hardening-softening curves, observation of microstructure, observation of surface relief, measuring of microhardness and fractographical analysis of fracture surfaces were used for further examination of the influence of the structure directionality. Some of these measured characteristics did not show any influence of the structure directionality (microhardness, fatigue life curve, Young modulus). In other cases is this influence measurable, however insignificant (yield stress, ultimate stress, cyclic hardening-softening curves and kinetics of short fatigue cracks growth). It can be summarised that the material, though the directionality of its microstructure is apparent, shows relatively isotropic mechanical behaviour.
Influence of Structure Directionality on Fatigue Properties of Formed Al Alloy.
Jíša, David ; Mazal, Pavel (referee) ; Liškutín, Petr (advisor)
The main goal of this diploma thesis is the examination of the influence of structure directionality on fatigue properties of formed aluminium alloy 6082/T6. The main attention is focused on the study of the influence of structure directionality on kinetics of short fatigue cracks growth. The measurement of short fatigue cracks growth was performed on cylindrical samples. The samples were made in two different directions; one parallel with the forming direction and second perpendicular to the forming direction. Servo hydraulic machine MTS 880 was used for the cyclic loading. The samples were cycled at two different constant stress amplitudes. Cyclic loading was systematically interrupted in order to measure the length of short cracks by a light microscope. Tensile tests, measuring of cycling hardening-softening curves, observation of microstructure, observation of surface relief, measuring of microhardness and fractographical analysis of fracture surfaces were used for further examination of the influence of the structure directionality. Some of these measured characteristics did not show any influence of the structure directionality (microhardness, fatigue life curve, Young modulus). In other cases is this influence measurable, however insignificant (yield stress, ultimate stress, cyclic hardening-softening curves and kinetics of short fatigue cracks growth). It can be summarised that the material, though the directionality of its microstructure is apparent, shows relatively isotropic mechanical behaviour.
Fatigue properties of Eurofer steel developed for fusion application
Kuběna, Ivo ; Kruml, Tomáš ; Hutař, Pavel ; Náhlík, Luboš ; Seitl, Stanislav ; Polák, Jaroslav
In this study fatigue properties of Eurofer 97 steel in room temperatures were measured. Fatigue parameters of the cyclic stress - strain curve and fatigue life curves (Coffin-Manson curve and derived Wöhler curve) were evaluated. Major attention was given to the measurement of kinetics of fatigue crack growth by two different methods. The initiation sites of fatigue cracks and short crack growth were observed and measured on cylindrical specimens with shallow notch. These cracks had a length from 20 micrometers to 1 mm. Kinetics of growth of long cracks with the length 15-30 mm was measured on CT specimens. It was found that results obtained by the both methods are in a good agreement if the J-integral is used. It was possible to determine the threshold values of J-integral and stress intensity factor and to calculate the Paris law parameters.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.