National Repository of Grey Literature 9 records found  Search took 0.01 seconds. 
Kvantové kritické jevy v konečných systémech
Kloc, Michal ; Cejnar, Pavel (advisor) ; Novotný, Jiří (referee)
Singularities in quantum spectra - ground state and excited-state quantum phase transitions - are often connected with singularities in the classical limit of the system and have influence on other properties, such as quantum entanglement, as well. In the first part of the thesis we study quantum phase transitions within the U(2)-based Lipkin model. The relation between quasistationary points of the classical potential and the respective singularities in the spectrum is shown. In the second part, a system of two-level atoms interacting with electromagnetic field in an optical cavity is studied within two simplified models (non-integrable Dicke model and its integrable approximation known as Jaynes-Cummings model). The behaviour of quantum entanglement in these models is shown with a focus on the vicinity of the singular points.
Optimizing quantum simulations and the DMRG method
Brandejs, Jan ; Pittner, Jiří (advisor)
Title: Optimizing quantum simulations and the DMRG method Author: Jan Brandejs Department: Department of Chemical Physics and Optics Supervisor: doc. Dr. rer. nat. Jiří Pittner, DSc., J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Abstract: In this work, we explore the quantum information theoretical aspects of simulation of quantum systems on classical computers, in particular the many- electron strongly correlated wave functions. We describe a way how to reduce the amount of data required for storing the wavefunction by a lossy compression of quantum information. For this purpose, we describe the measures of quantum entanglement for the density matrix renormalization group method. We imple- ment the computation of multi-site generalization of mutual information within the DMRG method and investigate entanglement patterns of strongly correlated chemical systems. We present several ways how to optimize the ground state calculation in the DMRG method. The theoretical conclusions are supported by numerical simulations of the diborane molecule, exhibiting chemically interest- ing electronic structure, like the 3-centered 2-electron bonds. In the theoretical part, we give a brief introduction to the principles of the DMRG method. Then we explain the quantum informational...
Quantum critical phenomena in finite systems
Kloc, Michal
Singularities in quantum spectra - ground state and excited-state quantum phase transitions - are often connected with singularities in the classical limit of the system and have influence on other properties, such as quantum entanglement, as well. In the first part of the thesis we study quantum phase transitions within the U(2)-based Lipkin model. The relation between quasistationary points of the classical potential and the respective singularities in the spectrum is shown. In the second part, a system of two-level atoms interacting with electromagnetic field in an optical cavity is studied within two simplified models (non-integrable Dicke model and its integrable approximation known as Jaynes-Cummings model). The behaviour of quantum entanglement in these models is shown with a focus on the vicinity of the singular points. Powered by TCPDF (www.tcpdf.org)
Optimizing quantum simulations and the DMRG method
Brandejs, Jan ; Pittner, Jiří (advisor) ; Zamastil, Jaroslav (referee)
Title: Optimizing quantum simulations and the DMRG method Author: Jan Brandejs Department: Department of Chemical Physics and Optics Supervisor: doc. Dr. rer. nat. Jiří Pittner, DSc., J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Abstract: In this work, we explore the quantum information theoretical aspects of simulation of quantum systems on classical computers, in particular the many- electron strongly correlated wave functions. We describe a way how to reduce the amount of data required for storing the wavefunction by a lossy compression of quantum information. For this purpose, we describe the measures of quantum entanglement for the density matrix renormalization group method. We imple- ment the computation of multi-site generalization of mutual information within the DMRG method and investigate entanglement patterns of strongly correlated chemical systems. We present several ways how to optimize the ground state calculation in the DMRG method. The theoretical conclusions are supported by numerical simulations of the diborane molecule, exhibiting chemically interest- ing electronic structure, like the 3-centered 2-electron bonds. In the theoretical part, we give a brief introduction to the principles of the DMRG method. Then we explain the quantum informational...
Quantum critical phenomena in finite systems
Kloc, Michal
Singularities in quantum spectra - ground state and excited-state quantum phase transitions - are often connected with singularities in the classical limit of the system and have influence on other properties, such as quantum entanglement, as well. In the first part of the thesis we study quantum phase transitions within the U(2)-based Lipkin model. The relation between quasistationary points of the classical potential and the respective singularities in the spectrum is shown. In the second part, a system of two-level atoms interacting with electromagnetic field in an optical cavity is studied within two simplified models (non-integrable Dicke model and its integrable approximation known as Jaynes-Cummings model). The behaviour of quantum entanglement in these models is shown with a focus on the vicinity of the singular points. Powered by TCPDF (www.tcpdf.org)
Kvantové kritické jevy v konečných systémech
Kloc, Michal ; Cejnar, Pavel (advisor) ; Novotný, Jiří (referee)
Singularities in quantum spectra - ground state and excited-state quantum phase transitions - are often connected with singularities in the classical limit of the system and have influence on other properties, such as quantum entanglement, as well. In the first part of the thesis we study quantum phase transitions within the U(2)-based Lipkin model. The relation between quasistationary points of the classical potential and the respective singularities in the spectrum is shown. In the second part, a system of two-level atoms interacting with electromagnetic field in an optical cavity is studied within two simplified models (non-integrable Dicke model and its integrable approximation known as Jaynes-Cummings model). The behaviour of quantum entanglement in these models is shown with a focus on the vicinity of the singular points.
The Dynamics of Complex Logistic
Andrey, Ladislav ; Ando, H. ; Aihara, K.
Fulltext: content.csg - Download fulltextPDF
Plný tet: v1031-08 - Download fulltextPDF
The Quantum Second Law and Quantum Information
Andrey, Ladislav
Fulltext: content.csg - Download fulltextPDF
Plný tet: v1027-08 - Download fulltextPDF
New physical attacks and security of smart-card
Hrubý, Jaroslav
Power analysis is a successful cryptonalytic technique which extracts secret inforamtion from smart-card by analysing the power consumed during the execution of their internal programs. These attacks are particularly dangerous in financial applications in which users their smart-cards into teller machines which are owned and operated by potentially dishonest entities.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.