National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Solution of Continuous Systems by Evolutionary Computational Techniques
Lang, Stanislav ; Šeda, Miloš (referee) ; Olehla, Miroslav (referee) ; Matoušek, Radomil (advisor)
The thesis deals the issue of solution of continuous systems by evolutionary computational techniques. Evolutionary computing techniques fall into the field of softcomputing, an advanced metaheuristics optimization that is becoming more and more a method of solving complicated optimization problems with the gradual increase in computing performance of computers. The solution of continuous systems, or the synthesis of continuous control circuits, is one of the areas where these advanced algorithms find their application. When dealing with continuous systems we will focus on regulatory issues. Evolutionary computing can then become a tool not only for optimization of controller parameters but also to design its structure. Various algorithms (genetic algorithm, differential evolution, etc.) can be used to optimize the parameters of the controller, for the design of the controller structurewe usually encounter so called grammatical evolution. However, the use of grammatical evolution is not necessary if appropriate coding is used, as suggested in the presented thesis. The thesis presents a method of designing the structure and parameters of a general linear controller using the genetic algorithm. A general linear regulator is known also as so called polynomial controller, if we encounter the polynomial theory of control. The method of encoding the description of the general linear controller into the genetic chain is crucial, it determines a set of algorithms that are usable for optimization and influence the efficiency of the calculations. Described coding, effective EVT implementation, including multi-criteria optimization, is a key benefit of this work.
Influence of Religiosity on Quality of Life of patients with Epilepsy
Kolská, Marta ; Javůrková, Alena (advisor) ; Nikodemová, Hana (referee)
Objectives: The aim of this thesis is to investigate how the variables Locus of Control, God Locus of Health Control and religiosity predict the quality of life of patients with epilepsy and whether these variables differ in prevalence in a healthy control group. Methods: The research group consisted of 275 patients with epilepsy examined within the neuropsychological Centre for the Treatment of Epilepsy of the Department of Neurology, 2nd Medical Faculty and Motol University Hospital. The comparison group consisted of a group of 182 healthy respondents. Respondents were interviewed using WAIS-III, EPQ R abbreviated version, BDI-II, VAS, QOLIE-89 (version 1.0) and GLHC. The t-test and the Mann-Whitney test were used to determine differences between groups. Contingency tables were used for discrete quantities. The relationship between the variables was demonstrated by Spearman's correlation coefficient and multiple linear regression. The research was approved by the Ethics Committee of the Motol University Hospital. Results: The resulting model of stepwise linear regression prediction of the Mean score showed that by including the variables Neuroticism HS and GLHC˃6 in the overall model, these significant variables can explain 21.44 % variability of Locus of control (R2=0.2144). It was also found...
Solution of Continuous Systems by Evolutionary Computational Techniques
Lang, Stanislav ; Šeda, Miloš (referee) ; Olehla, Miroslav (referee) ; Matoušek, Radomil (advisor)
The thesis deals the issue of solution of continuous systems by evolutionary computational techniques. Evolutionary computing techniques fall into the field of softcomputing, an advanced metaheuristics optimization that is becoming more and more a method of solving complicated optimization problems with the gradual increase in computing performance of computers. The solution of continuous systems, or the synthesis of continuous control circuits, is one of the areas where these advanced algorithms find their application. When dealing with continuous systems we will focus on regulatory issues. Evolutionary computing can then become a tool not only for optimization of controller parameters but also to design its structure. Various algorithms (genetic algorithm, differential evolution, etc.) can be used to optimize the parameters of the controller, for the design of the controller structurewe usually encounter so called grammatical evolution. However, the use of grammatical evolution is not necessary if appropriate coding is used, as suggested in the presented thesis. The thesis presents a method of designing the structure and parameters of a general linear controller using the genetic algorithm. A general linear regulator is known also as so called polynomial controller, if we encounter the polynomial theory of control. The method of encoding the description of the general linear controller into the genetic chain is crucial, it determines a set of algorithms that are usable for optimization and influence the efficiency of the calculations. Described coding, effective EVT implementation, including multi-criteria optimization, is a key benefit of this work.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.