National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Influence of underground installation conditions on crack propagation in polypropylene pipes
Tesař, Jakub ; Gratza, Roman (referee) ; Hutař, Pavel (advisor)
The thesis addresses the issue of buried polymer pipes and the impact of installation conditions on their lifetime. Based on data obtained from standards, the values of external loads acting on the polymer pipe are determined. To apply these values in numerical calculations, the conversion of individual load components is also provided. Various stress values, simulating different burial installation conditions, are applied to a 2D model. The numerical calculation of the 2D model includes the progression of tangential stresses and their comparison with the standard. Furthermore, the influence of installation conditions on the burial depth of the pipe is analyzed. The comparison of models is conducted for both 2D and 3D models against the standard. The comparison verifies that the models are equivalent and closely correspond to the basic calculations according to the standard. The 3D model is then extended to include a crack, and the propagation through the pipe wall under the most critical load conditions is modeled. The concept of linear elastic fracture mechanics is used to estimate the lifetime of the pipe.
Description of the residual stresses in polymer pipes
Poduška, Jan ; Majer, Zdeněk (referee) ; Hutař, Pavel (advisor)
This thesis is dealing with the issue of residual stress present in the wall of a polymer pipe and the influence on its lifetime. Experimental data obtained by the ring slitting method are evaluated and the tangential residual stress in the wall of polypropylene pipe is determined. The evaluation is carried out using a new methodology based on the curved beam theory. The method is verified using numerical simulation. 3D numerical model is used to verify the behavior of the pipe, when there are both tangential and axial residual stresses present in the pipe wall, because the presence of axial stress causes a rise in the magnitude of tangential residual stress. A correction of the tangential stress values corresponding to the pipe length is then proposed. It is shown, that the distribution of the tangential residual stress does not depend significantly on the dimensions or ma-terial of the extruded pipe and a general equation is proposed to describe the distribution. This general distribution is then involved in the calculations of the pipe lifetime that are carried out using a method based on the linear elastic fracture mechanics. A significantly lower lifetimes are obtained when taking the residual stress into account.
Prediction of slow crack growth in polymer pressure pipes
Luky, Robin ; Knésl, Zdeněk (referee) ; Hutař, Pavel (advisor)
A new methodology of polymer pipe lifetime estimation taking into account residual stresses is described in this thesis. Engineering equations derived based on numerical simulations of a hydrostatic pressure test are proposed. Residual lifetime calculations were performed for different loading conditions using experimental data of a creep crack propagation in studied material and stress distribution in the pipe wall. The effects which significantly influence lifetime estimation were quantified with special focus on residual stresses.
Description of creep crack propagation in electrofusion sockets for polymer pipes connection
Helešicová, Petra ; Horníková, Jana (referee) ; Trávníček, Lukáš (advisor)
The presented bachelor’s thesis deals with crack propagation by the slow crack growth mechanism in electrofusion sockets used for welding of polymer pipes. The thesis can be divided into several parts. First part presents a research on the topic of polymer pipes, materials used for their production, types of failures and ways of connecting including detailed description of the process of electrofusion welding with electrofusion sockets. Next part is focused on fracture mechanics that is used for the practical part of the thesis. The theory of linear elastic fracture mechanics and its stress-intensity approach are described. Different ways of obtaining the stress intensity factor, which is the main parameter used to describe the stress distribution at the crack tip, are presented. The practical part of the thesis focuses on numerical modelling of crack propagation through an electrofusion socket wall and calculating values of stress intensity factor in dependence on the crack length. The creation of the numerical model for the crack propagation simulation is described. The direction of propagation is evaluated using MTS criterion. The whole simulation is carried out by a parametric macro created using the APDL language. The main goal of the thesis is to describe the influence of the socket geometry or joint configuration changes on the stress intensity factor values and calculated lifetimes. The stress intensity factor functions for the modified configurations are compared to the original. At the end of the thesis, lifetime estimations of the electrofusion sockets are also calculated using the stress intensity factor functions and compared.
Description of creep crack propagation in electrofusion sockets for polymer pipes connection
Helešicová, Petra ; Horníková, Jana (referee) ; Trávníček, Lukáš (advisor)
The presented bachelor’s thesis deals with crack propagation by the slow crack growth mechanism in electrofusion sockets used for welding of polymer pipes. The thesis can be divided into several parts. First part presents a research on the topic of polymer pipes, materials used for their production, types of failures and ways of connecting including detailed description of the process of electrofusion welding with electrofusion sockets. Next part is focused on fracture mechanics that is used for the practical part of the thesis. The theory of linear elastic fracture mechanics and its stress-intensity approach are described. Different ways of obtaining the stress intensity factor, which is the main parameter used to describe the stress distribution at the crack tip, are presented. The practical part of the thesis focuses on numerical modelling of crack propagation through an electrofusion socket wall and calculating values of stress intensity factor in dependence on the crack length. The creation of the numerical model for the crack propagation simulation is described. The direction of propagation is evaluated using MTS criterion. The whole simulation is carried out by a parametric macro created using the APDL language. The main goal of the thesis is to describe the influence of the socket geometry or joint configuration changes on the stress intensity factor values and calculated lifetimes. The stress intensity factor functions for the modified configurations are compared to the original. At the end of the thesis, lifetime estimations of the electrofusion sockets are also calculated using the stress intensity factor functions and compared.
Description of the residual stresses in polymer pipes
Poduška, Jan ; Majer, Zdeněk (referee) ; Hutař, Pavel (advisor)
This thesis is dealing with the issue of residual stress present in the wall of a polymer pipe and the influence on its lifetime. Experimental data obtained by the ring slitting method are evaluated and the tangential residual stress in the wall of polypropylene pipe is determined. The evaluation is carried out using a new methodology based on the curved beam theory. The method is verified using numerical simulation. 3D numerical model is used to verify the behavior of the pipe, when there are both tangential and axial residual stresses present in the pipe wall, because the presence of axial stress causes a rise in the magnitude of tangential residual stress. A correction of the tangential stress values corresponding to the pipe length is then proposed. It is shown, that the distribution of the tangential residual stress does not depend significantly on the dimensions or ma-terial of the extruded pipe and a general equation is proposed to describe the distribution. This general distribution is then involved in the calculations of the pipe lifetime that are carried out using a method based on the linear elastic fracture mechanics. A significantly lower lifetimes are obtained when taking the residual stress into account.
Prediction of slow crack growth in polymer pressure pipes
Luky, Robin ; Knésl, Zdeněk (referee) ; Hutař, Pavel (advisor)
A new methodology of polymer pipe lifetime estimation taking into account residual stresses is described in this thesis. Engineering equations derived based on numerical simulations of a hydrostatic pressure test are proposed. Residual lifetime calculations were performed for different loading conditions using experimental data of a creep crack propagation in studied material and stress distribution in the pipe wall. The effects which significantly influence lifetime estimation were quantified with special focus on residual stresses.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.