National Repository of Grey Literature 14 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Identification of Organisms Based on Analysis of Nucleotide Density Vectors
Maděránková, Denisa ; Babula, Petr (referee) ; Schwarz, Daniel (referee) ; Provazník, Ivo (advisor)
Most methods for analysis of genomic data work with symbolic sequences. Numerically represented genomic sequences can be analyzed by signal processing methods. A new method of numerical representation of DNA sequences, nucleotide density vectors, is proposed in this thesis. Usability of this method for purposes of molecular species identification is tested on DNA barcoding sequences. DNA barcoding is modern and popular methodology based on comparison of short mitochondrial DNA sequences. Beside species identification by proposed method based on nucleotide density vectors, higher taxa rank identification (e.g. families) was also tested. Furthermore, dendrograms were constructed from standardly used evolutionary distances and distances between nucleotide density vectors and the dendrograms were compared.
Evaluation of numerical representations suitability for overlap detection
Pleskačová, Barbora ; Maděránková, Denisa (referee) ; Jugas, Robin (advisor)
The bachelor´s thesis is focused on the evaluation of numerical representations suitability for overlap detection. Introductory part deals with description of deoxyribonucleic acid structure. The next part discribes sequencing methods and genome assembly techniques. Following part deals with numerical representations that convert DNA sequences into numerical form. Based on similarity metrics, the use of these representations is tested for the detection of overlaps between DNA reads. In the practical part of the thesis an algorithm for overlap detection is designed and implemented using numerical representations. The algorithm is then tested on data.
Effect of different numerical representations of DNA on molecular taxonomy
Blaschová, Eliška ; Provazník, Ivo (referee) ; Maděránková, Denisa (advisor)
This paper introduces the classical and molecular taxonomy used for classification of organisms. It represents the direction of DNA barcoding as a possibility to identify unknown organism. Acquired mitochondrial DNA sequences in DNA barcoding can by transform by suitable method to numerical representation that will properly inform about the organisms relationship to other taxa. In this work, we consider three methods of numerical representation: the 1st and 4th quadrant EIIP values and 3D numerical representation reduction. The practical part is programmed identification analysis, which assigns the test organisms reference organism. Testing is performed at 4 reference files and analyzed 5 files. The work summarized the success assigning the correct reference for the selected method of numerical representation.
Mitochondrial DNA for molecular taxonomy
Kalianková, Kateřina ; Babula, Petr (referee) ; Maděránková, Denisa (advisor)
This work deals with mitochondrial DNA and molecular taxonomy. Structure and composition of animal cell, deoxyribonucleic acids and mitochondrial ribonucleic acids are described in the introduction. Another part contains information of DNA barcoding and numerical representation of genomic sequences. Programs are described in the practical part.
Mobile genetic elements detection by genomic signal processing
Nováková, Jarmila ; Sedlář, Karel (referee) ; Škutková, Helena (advisor)
Mobile genetic elements are occupied by this project. It is aimed at their features, which can be used for their detection. It also deals with issue of conversion of symbolic sequence into numerical form. Classifications of mobile genetic elements are explained, basic types of mobile genetic sequences are described, and principles of numerical maps and detection in symbolic represetation are also clarified. Conversion of symbolic genetical sequences by chosen numerical map and calculation of normalized correlation values for set of mobile genetic elements are compiled. Analysis of the mobile genetic elements properties is performed for design of detector. The library of themes is created at the end for usage by designed detector.
Evaluation of Organisms Relationship by Genomic Signal Processing
Škutková, Helena ; Tkacz, Ewaryst (referee) ; Schwarz,, Daniel (referee) ; Provazník, Ivo (advisor)
This dissertation deals with alternative techniques for analysis of genetic information of organisms. The theoretical part presents two different approaches for evaluation of relationship between organisms based on mutual similarity of genetic information contained in their DNA sequences. The first approach is currently standardized phylogenetics analysis of character based records of DNA sequences. Although this approach is computationally expensive due to the need of multiple sequence alignment, it allows evaluation of global and local similarity of DNA sequences. The second approach is represented by techniques for classification of DNA sequences in a form of numerical vectors representing characteristic features of their genetic information. These methods known as „alignment free“ allow fast evaluation of global similarity but cannot evaluate local changes. The new method presented in this dissertation combines the advantages of both approaches. It utilizes numerical representation similar to 1D digital signal, i.e. representation that contains specific trend along x-axis. The experimental part of dissertation deals with design of a set of appropriate tools for genomic signal processing to allow evaluation mutual similarity of taxonomically specific trends. On the basis of the mutual similarity of genomic signals, the classification in the form of dendrogram is applied. It corresponds to phylogenetic trees used in standard phylogenetics.
Signal processing based methods for genome assembly refinement
Jugas, Robin ; Provazník, Ivo (referee) ; Sedlář, Karel (advisor)
The diploma thesis deals with sequencing methods and genome assembly methods including usage of numerical representations. The theoretical part of thesis describes the history of DNA research, generations of sequencing methods, the assembly methods themselves and definiton of numerical representations. Numerical represenatations serve to convert character form of DNA to numerical form and so allow to use digital signal processing methods. There is an algorithm for genome assembly using numerical represenatation proposed in thesis, which is later tested at sequence data.
Evaluation of numerical representations suitability for overlap detection
Pleskačová, Barbora ; Maděránková, Denisa (referee) ; Jugas, Robin (advisor)
The bachelor´s thesis is focused on the evaluation of numerical representations suitability for overlap detection. Introductory part deals with description of deoxyribonucleic acid structure. The next part discribes sequencing methods and genome assembly techniques. Following part deals with numerical representations that convert DNA sequences into numerical form. Based on similarity metrics, the use of these representations is tested for the detection of overlaps between DNA reads. In the practical part of the thesis an algorithm for overlap detection is designed and implemented using numerical representations. The algorithm is then tested on data.
Mobile genetic elements detection by genomic signal processing
Nováková, Jarmila ; Sedlář, Karel (referee) ; Škutková, Helena (advisor)
Mobile genetic elements are occupied by this project. It is aimed at their features, which can be used for their detection. It also deals with issue of conversion of symbolic sequence into numerical form. Classifications of mobile genetic elements are explained, basic types of mobile genetic sequences are described, and principles of numerical maps and detection in symbolic represetation are also clarified. Conversion of symbolic genetical sequences by chosen numerical map and calculation of normalized correlation values for set of mobile genetic elements are compiled. Analysis of the mobile genetic elements properties is performed for design of detector. The library of themes is created at the end for usage by designed detector.
Effect of different numerical representations of DNA on molecular taxonomy
Blaschová, Eliška ; Provazník, Ivo (referee) ; Maděránková, Denisa (advisor)
This paper introduces the classical and molecular taxonomy used for classification of organisms. It represents the direction of DNA barcoding as a possibility to identify unknown organism. Acquired mitochondrial DNA sequences in DNA barcoding can by transform by suitable method to numerical representation that will properly inform about the organisms relationship to other taxa. In this work, we consider three methods of numerical representation: the 1st and 4th quadrant EIIP values and 3D numerical representation reduction. The practical part is programmed identification analysis, which assigns the test organisms reference organism. Testing is performed at 4 reference files and analyzed 5 files. The work summarized the success assigning the correct reference for the selected method of numerical representation.

National Repository of Grey Literature : 14 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.