National Repository of Grey Literature 16 records found  previous11 - 16  jump to record: Search took 0.00 seconds. 
The study of epigenetic regulation of HLA class II genes at the level of histone modification
Černoch, Marek ; Černá, Marie (advisor) ; Hirsch, Ivan (referee)
Introduction: The epigenetic modifications can significantly affect and alter the gene activity by regulating their expression, having direct impact on various processes in human body. Epigenetic processes are involved in ethiopathogenesis of many diseases. From this point of view, MHC genes are very important as they were linked to many autoimmune disorders, for example type 1 diabetes mellitus. In general autoimmune diseases appear to be connected to certain MHC class II genes. Aims: The aim of this thesis is to determine the relationship between expression levels and histone modifications present in the promoter area of MHC class II gene, DQA1. Moreover, we also analyze and compare the DQA1 gene mRNA expression depending on the QAP promoter allele. Methods: We isolated both nucleic acids (DNA and RNA) and leukocytes from peripheral blood samples collected from voluntary donors. DNA was utilized for genotypization of individuals. RNA was subjected to reverse transcription and the quantitative PCR was performed in order to determine the level of expression. Leukocytes were used for chromatin immunoprecipitation, which was evaluated using quantitative PCR. Results: The expression level of QAP allele 3.1 was found to be higher than for the rest of the alleles Allele 4.1A showed, on the other hand,...
Regulation of alternative splicing via chromatin modifications
Hozeifi, Samira ; Staněk, David (advisor) ; Krásný, Libor (referee) ; Lanctôt, Christian (referee)
Alternative splicing (AS) is involved in expansion of transcriptome and proteome during cell growth, cell death, pluripotency, cell differentiation and development. There is increasing evidence to suggest that splicing decisions are made when the nascent RNA is still associated with chromatin. Here, I studied regulation of AS via chromatin modification with main focus on histone acetylation. First, we demonstrate that activity of histone deacetylases (HDACs) influences splice site selection in 700 genes. We provided evidence that HDAC inhibition induces histone H4 acetylation and increases RNA Polymerase II (RNA Pol II) processivity along an alternatively spliced element. In addition, HDAC inhibition reduces co-transcriptional association of the splicing regulator SRp40 with the target fibronectin exon. Further we showed that histone acetylation reader, Brd2 protein, affect transcription of 1450 genes. Besides, almost 290 genes change their AS pattern upon Brd2 depletion. We study distribution of Brd2 along the target and control genes and find that Brd2 is specifically localized at promoters of target genes only. Surprisingly, Brd2 interaction with chromatin cannot be explained solely by histone acetylation, which suggests that other protein-domains (in addition to bromodomains) are important for...
Functional genome analysis using the retroviral integration sites permissive for provirus expression in human cells
Miklík, Dalibor ; Hejnar, Jiří (advisor) ; Španielová, Hana (referee)
The expression of retroviral genes depends on the establishment of the provirus - the DNA copy of retroviral genome integrated into the host genome. The transcriptional state of provirus is then influenced by the environment at the site of integration. The phenomenon of proviral silencing is an obstacle to the usage of retroviral vectors and a barrier to the eradication of human immunodeficiency virus type 1 (HIV-1) from infected individuals. Taking advantage of single cell clones bearing one provirus, this diploma thesis investigates the distribution of (epi)genomic features at the sites occupied by stably expressed proviruses. In total, long-term expression profiles of 245 and 255 clones carrying avian sarcoma-leucosis virus (ASLV) and HIV-1, respectively, were obtained. The database-based analysis of 42 integration sites of ASLV and three integration sites of HIV-1 proviruses shows that proviral stable expression highly correlates with the transcriptional start sites (TSS) at the sites of integration. Histone marks characteristic for the proximity of active TSSs and regulatory elements at the sites of integration of stably expressed proviruses confirm this finding. The results presented in this thesis could inspire other analyses investigating the relationship between the integration site and the...
Epigenetic regulation of retroviruses.
Dobšová, Martina ; Trejbalová, Kateřina (advisor) ; Drda Morávková, Alena (referee)
The human genome is the site of integration of the retrovirus HIV-1, ERVWE1 (syncytin-1) is its stable part. Thus as an integral part of the genome, they are under influence of important genome based epigenetics regulations, such as DNA methylation, histone methylation and acetylation. Promoter DNA hypermethylation and histone deacetylation leads to establishment and maintenance of latent state of the HIV-1 virus and formation of the latent reservoir in the CD4+ memory T-cells. This process leads to severe problems during HIV-1 infection treatment by antiretroviral therapy (HAART), as the HIV-1 latent reservoir remains unaffected. Moreover DNA hypermethylation in the promoter of syncytin-1 directs its transcriptional silencing, which is important in tissue specific regulation of this fusogenic protein. In physiological conditions syncytin-1 expression is observed only in placental cells, where the DNA methylation of promoter is decreased. Higher expression level of syncytin-1 was also observed in several other tissues, such as testes, where it is tightly coupled with germ-cells tumors and syncytin-1 promoter hypomethylation. In conclusion, epigenetic regulation of retroviruses by DNA methylation and chromatin modifications highly influence regulation of their expression. Presented bachelor thesis...
Role of Smarca5 (Snf2h) during transcription of transfected DNA template.
Zikmund, Tomáš ; Stopka, Tomáš (advisor) ; Smetana, Karel (referee)
Cellular and tissue characteristics are results of dynamic regulation of gene expression. DNA wrapped into proteins, referred to as chromatin, requires involvement of mechanisms guiding accessibility of specific sequences. In higher organisms, chromatin remodeling proteins are indispensable in regulating chromatin structure including ISWI ATPase SMARCA5. SMARCA5 is involved in almost any transaction on DNA including transcription, however precise in vivo role of SMARCA5 in these processes remains unknown. To advance understanding of specific role of SMARCA5 in the development of chromatin structure during transcription we devised cellular model in which SMARAC5 level is manipulated while chromatin structure development and transcriptional response are monitored. Our data indicate that the transfected DNA template that is transcribed is enriched with histone H3 and its specific methylation of Histone H3 lysine (K) 4, a mark of active chromatin structure. Overexpression of SMARCA5 results within the reporter gene coding sequence in ~2,5-3 fold increase of both H3 occupancy an its modification H3K4Me3. Increased DNA template commitment into chromatinization is associated with repression of reporter gene expression. These results are supported by studies indicating dynamic development of nucleosomal...
The study of epigenetic regulation of gene HLA II. Clas within family relationships
Chmel, Martin ; Černá, Marie (advisor) ; Urbanová, Jana (referee)
Introduction: At our post-genomic era the studies of epigenetic regulation constitutes one of the tools for understanding the function of genes. Epigenetic regulation can directly control the temporal and spatial gene activity or silencing. The molecular basis of these regulations are DNA bases modifications, chromatin remodeling and RNA interference. At the same time, these mechanisms have a special way of transferring genetic information to subsequent generations called epigenetic inheritance. It has been proven epigenetic deregulation of certain genes as cause for many disease. For this reason, the study of epigenome HLA genes seems particularly important because these genes play a fundamental role in regulating the immune system. Aims: The aim of this work is to create a description of epigenetic modifications within families. It is an analysis of histone modifications and DNA methylation in the promoter region of the gene HLA DQA1. The aim was also to compare the differences in epigenetic modifications between alleles and compared the differences in these modifications between generations. The results will be compared with the analysis of the level of expression of the gene HLA DQA1. Methods: From collected peripheral blood of donors were isolated DNA, RNA, and leukocytes. DNA was used for...

National Repository of Grey Literature : 16 records found   previous11 - 16  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.