National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Tubular minichannel heat transfer coefficient measurement
Snášel, Jan ; Kamenský, Petr (referee) ; Hejčík, Jiří (advisor)
The master’s thesis is describing measurement of heat transfer coefficient for heat exchanger with tubular minichannels. For understanding of the process, basic theory of heat transfer has its part in this work. The advanteges of minichannels and their clasiffication are also stated here. Another part describes the calculation for determination of heat transfer coefficient using the Wilson plot method and the method of direct determination of heat transfer coefficient. Measurement data are evaluated and comparison is made for results of both methods. This results are used for formulation of correlation equation for given flow regime.
Flow sensor
Symerský, Tomáš ; Psota, Boleslav (referee) ; Kosina, Petr (advisor)
This diploma thesis is divided into two parts - theoretical and practical. In its first, theoretical part, deals with the theory of fluid and gas flow, heat transfer and diversification of sensors for flow measurement working on the electrical principle. It also deals with thermodynamic principle, which can be used for measuring very small flow and low-temperature ceramics that is used to implement microcanals for sensing very low flows. The practical part of the thesis deals with the very simulation of the entire structure in the program “COMSOL Multiphysics” - both in 2D and 3D views. Then there is shown the implementation and measurement of the flow sensor in a low-temperature ceramics, working on a thermodynamic principle.
Selection of suitable fluid flow directions in laminar flow tubular cooler
Krobot, David ; Kohoutek, Josef (referee) ; Jegla, Zdeněk (advisor)
This master’s thesis is devoted to problematic of selection of suitable flow directions in double pipe heat exchanger. First chapter is oriented to the construction of tube heat exchangers. It is also discussed impact of construction solution to the flow character and changing of his process parameters. The difference between parallel and countercurrent flow is also occurred in this parts. The next chapter is focused to the basics of heat-hydraulic calculations of heat exchanger. This also means explanation of ways of heat transfer and heat exchanger function. There are told about specific access to the solving problem of fluid laminar flow. The third chapter is detailed focused to the calculating of heat exchanger. At first is discussed factors, which have impact to the flow character. Next are detailed descriptions of design and controlling calculations, including more alternative ways to solve it. Next chapter exploit those results for deciding, which flow arrangement will be better for given case. Last chapter contain realization and reformulating of process heat exchanger calculating to the program code in Maple. There is also description of used algorithms and operating with them, so any user could be able to work with it. In this master’s thesis are used many examples from attached programs on different parts.
Tubular minichannel heat transfer coefficient measurement
Snášel, Jan ; Kamenský, Petr (referee) ; Hejčík, Jiří (advisor)
The master’s thesis is describing measurement of heat transfer coefficient for heat exchanger with tubular minichannels. For understanding of the process, basic theory of heat transfer has its part in this work. The advanteges of minichannels and their clasiffication are also stated here. Another part describes the calculation for determination of heat transfer coefficient using the Wilson plot method and the method of direct determination of heat transfer coefficient. Measurement data are evaluated and comparison is made for results of both methods. This results are used for formulation of correlation equation for given flow regime.
Selection of suitable fluid flow directions in laminar flow tubular cooler
Krobot, David ; Kohoutek, Josef (referee) ; Jegla, Zdeněk (advisor)
This master’s thesis is devoted to problematic of selection of suitable flow directions in double pipe heat exchanger. First chapter is oriented to the construction of tube heat exchangers. It is also discussed impact of construction solution to the flow character and changing of his process parameters. The difference between parallel and countercurrent flow is also occurred in this parts. The next chapter is focused to the basics of heat-hydraulic calculations of heat exchanger. This also means explanation of ways of heat transfer and heat exchanger function. There are told about specific access to the solving problem of fluid laminar flow. The third chapter is detailed focused to the calculating of heat exchanger. At first is discussed factors, which have impact to the flow character. Next are detailed descriptions of design and controlling calculations, including more alternative ways to solve it. Next chapter exploit those results for deciding, which flow arrangement will be better for given case. Last chapter contain realization and reformulating of process heat exchanger calculating to the program code in Maple. There is also description of used algorithms and operating with them, so any user could be able to work with it. In this master’s thesis are used many examples from attached programs on different parts.
Flow sensor
Symerský, Tomáš ; Psota, Boleslav (referee) ; Kosina, Petr (advisor)
This diploma thesis is divided into two parts - theoretical and practical. In its first, theoretical part, deals with the theory of fluid and gas flow, heat transfer and diversification of sensors for flow measurement working on the electrical principle. It also deals with thermodynamic principle, which can be used for measuring very small flow and low-temperature ceramics that is used to implement microcanals for sensing very low flows. The practical part of the thesis deals with the very simulation of the entire structure in the program “COMSOL Multiphysics” - both in 2D and 3D views. Then there is shown the implementation and measurement of the flow sensor in a low-temperature ceramics, working on a thermodynamic principle.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.