National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Composite materials with silica matrix in the environment of high temperatures
Lisztwanová, Ewa ; Luňáček,, Martin (referee) ; Bydžovský, Jiří (advisor)
This thesis deals with the study and design of composite materials based on silica matrix suitable for extreme conditions, eg. for the repair of concrete structures with anticipated increased risk of fire. The theoretical part summarizes basic knowledge concerning the fire resistance of structures and the behavior of the composite system during extreme conditions. Theoretically oriented section also contains information on alkali-activated materials and their use in high temperature environments. Based on the evaluation of the theoretical part of the experiment were designed and tested different types of composite materials with increased content of raw materials from alternative sources. Laboratory research has been based on testing of basic physico-mechanical parameters including phase composition and microstructure of the proposed formulations before and after thermal exposure of 1200 ° C. Also considered was the effect of different cooling conditions.
The development of composites based on alkali-activated matrices resistant to extreme temperatures
Ševčík, Marek ; Šácha, Libor (referee) ; Dufka, Amos (advisor)
The diploma thesis is focused on the development of composites from alkali activated materials (AAM) and their resistance to extreme temperatures. The theoretical part describes alkaline activation and precursors for the production of AAM. Furthermore, the problem of the effect of extreme temperatures on these materials is described. In the experimental part, the optimal silicate modulus with respect to the properties of AAM was gradually determined, and the effect of extreme temperatures on the AAM matrix was verified. In the next stage, the effect of the filler with respect to the behavior at extreme temperatures was tested and then the final formulation was optimized.
The development of composites based on alkali-activated matrices resistant to extreme temperatures
Ševčík, Marek ; Šácha, Libor (referee) ; Dufka, Amos (advisor)
The diploma thesis is focused on the development of composites from alkali activated materials (AAM) and their resistance to extreme temperatures. The theoretical part describes alkaline activation and precursors for the production of AAM. Furthermore, the problem of the effect of extreme temperatures on these materials is described. In the experimental part, the optimal silicate modulus with respect to the properties of AAM was gradually determined, and the effect of extreme temperatures on the AAM matrix was verified. In the next stage, the effect of the filler with respect to the behavior at extreme temperatures was tested and then the final formulation was optimized.
Physiological mechanisms of sorghum adaptation to abiotic stresses
Kratochvíl, Jan ; Konrádová, Hana (advisor) ; Lhotáková, Zuzana (referee)
Sorghum is a traditional crop, which has been grown especially in the countries of Africa and Asia. It is used as a food, fodder, source of fiber and energy. Because of its tolerance to various abiotic stresses, especially drought, sorghum is often called "the camel of crops", and there are a lot of studies trying to clarify the basis of this tolerance. Nowadays, suitable sorghum genotypes are considered as an alternative in other parts of the world (North and Middle America, Europe) or to widen the planting areas. The first part of this thesis summarizes results of current studies aimed on sorghum physiological responses to drought, high salinity, extreme temperatures, aluminium toxicity and the combination of these stresses. The second part explains the ways how to alleviate effect of stresses on the plant. It includes the application of various compounds and genetic modifications. Powered by TCPDF (www.tcpdf.org)
Composite materials with silica matrix in the environment of high temperatures
Lisztwanová, Ewa ; Luňáček,, Martin (referee) ; Bydžovský, Jiří (advisor)
This thesis deals with the study and design of composite materials based on silica matrix suitable for extreme conditions, eg. for the repair of concrete structures with anticipated increased risk of fire. The theoretical part summarizes basic knowledge concerning the fire resistance of structures and the behavior of the composite system during extreme conditions. Theoretically oriented section also contains information on alkali-activated materials and their use in high temperature environments. Based on the evaluation of the theoretical part of the experiment were designed and tested different types of composite materials with increased content of raw materials from alternative sources. Laboratory research has been based on testing of basic physico-mechanical parameters including phase composition and microstructure of the proposed formulations before and after thermal exposure of 1200 ° C. Also considered was the effect of different cooling conditions.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.