National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Bacterial proteins in the biogenesis of mitochondria of unicellular eukaryotes.
Petrů, Markéta ; Doležal, Pavel (advisor) ; Embley, Martin (referee) ; Hashimi, Hassan (referee)
in English Formation of mitochondria by the conversion of a bacterial endosymbiont is the fundamental moment in the evolution of eukaryotes. An integral part of the organelle genesis was the displacement of the endosymbiont genes to host nucleus and simultaneous creation of new pathways for delivery of proteins synthesized now in the host cytoplasm. Resulting protein translocases are complexes combining original bacterial components and eukaryote-specific proteins. In addition to these novel protein import machines, some components of the original bacterial secretory pathways have remained in the organelle. While the function of a widely distributed mitochondrial homolog of YidC, Oxa1, is well understood, the role of infrequent components of Sec or Tat translocases has not yet been elucidated. So far, more attention has been paid to their abundant plastid homologs, which assemble photosynthetic complexes in the thylakoid membrane. In the thesis, the structure and function of prokaryotic YidC, Sec and Tat machineries and their eukaryotic homologs are described. By comparing both organelles of the endosymbiotic origin, the hypothesis is drawn on why these translocases have been more "evolutionary successful" in plastids than in mitochondria.
Mitochondrial dynamics in myocardium.
Weissová, Romana ; Nováková, Olga (advisor) ; Kalous, Martin (referee)
The heart is an absolutely vital body organ, which requires sufficient amount of active mitochondria for its energy demanding activity. The functionality of a mitochondrial population is maintained through mitochondrial turnover, encompassing mitophagy removing damaged mitochondria and mitochondrial biogenesis responsible for the emergence of new organelles. Dynamic processes of mitochondrial fusion and fission can also contribute to the maintenance of a healthy mitochondrial population. Mitochondrial fusion and fission have not yet been proven in cardiomyocytes, although these cells possess all the proteins required for these events. These processes, however, take on the importance during pathological conditions, when changes in the amount of protein applied in the mitochondrial dynamics occur. The modification in mitochondrial phenotype leads to the cell damage. Understanding the role of mitochondrial dynamics in myocardium may contribute to the development of new heart diseases treatments.
Bacterial proteins in the biogenesis of mitochondria of unicellular eukaryotes.
Petrů, Markéta
in English Formation of mitochondria by the conversion of a bacterial endosymbiont is the fundamental moment in the evolution of eukaryotes. An integral part of the organelle genesis was the displacement of the endosymbiont genes to host nucleus and simultaneous creation of new pathways for delivery of proteins synthesized now in the host cytoplasm. Resulting protein translocases are complexes combining original bacterial components and eukaryote-specific proteins. In addition to these novel protein import machines, some components of the original bacterial secretory pathways have remained in the organelle. While the function of a widely distributed mitochondrial homolog of YidC, Oxa1, is well understood, the role of infrequent components of Sec or Tat translocases has not yet been elucidated. So far, more attention has been paid to their abundant plastid homologs, which assemble photosynthetic complexes in the thylakoid membrane. In the thesis, the structure and function of prokaryotic YidC, Sec and Tat machineries and their eukaryotic homologs are described. By comparing both organelles of the endosymbiotic origin, the hypothesis is drawn on why these translocases have been more "evolutionary successful" in plastids than in mitochondria.
Bacterial proteins in the biogenesis of mitochondria of unicellular eukaryotes.
Petrů, Markéta
in English Formation of mitochondria by the conversion of a bacterial endosymbiont is the fundamental moment in the evolution of eukaryotes. An integral part of the organelle genesis was the displacement of the endosymbiont genes to host nucleus and simultaneous creation of new pathways for delivery of proteins synthesized now in the host cytoplasm. Resulting protein translocases are complexes combining original bacterial components and eukaryote-specific proteins. In addition to these novel protein import machines, some components of the original bacterial secretory pathways have remained in the organelle. While the function of a widely distributed mitochondrial homolog of YidC, Oxa1, is well understood, the role of infrequent components of Sec or Tat translocases has not yet been elucidated. So far, more attention has been paid to their abundant plastid homologs, which assemble photosynthetic complexes in the thylakoid membrane. In the thesis, the structure and function of prokaryotic YidC, Sec and Tat machineries and their eukaryotic homologs are described. By comparing both organelles of the endosymbiotic origin, the hypothesis is drawn on why these translocases have been more "evolutionary successful" in plastids than in mitochondria.
Bacterial proteins in the biogenesis of mitochondria of unicellular eukaryotes.
Petrů, Markéta ; Doležal, Pavel (advisor) ; Embley, Martin (referee) ; Hashimi, Hassan (referee)
in English Formation of mitochondria by the conversion of a bacterial endosymbiont is the fundamental moment in the evolution of eukaryotes. An integral part of the organelle genesis was the displacement of the endosymbiont genes to host nucleus and simultaneous creation of new pathways for delivery of proteins synthesized now in the host cytoplasm. Resulting protein translocases are complexes combining original bacterial components and eukaryote-specific proteins. In addition to these novel protein import machines, some components of the original bacterial secretory pathways have remained in the organelle. While the function of a widely distributed mitochondrial homolog of YidC, Oxa1, is well understood, the role of infrequent components of Sec or Tat translocases has not yet been elucidated. So far, more attention has been paid to their abundant plastid homologs, which assemble photosynthetic complexes in the thylakoid membrane. In the thesis, the structure and function of prokaryotic YidC, Sec and Tat machineries and their eukaryotic homologs are described. By comparing both organelles of the endosymbiotic origin, the hypothesis is drawn on why these translocases have been more "evolutionary successful" in plastids than in mitochondria.
Mitochondrial dynamics in myocardium.
Weissová, Romana ; Nováková, Olga (advisor) ; Kalous, Martin (referee)
The heart is an absolutely vital body organ, which requires sufficient amount of active mitochondria for its energy demanding activity. The functionality of a mitochondrial population is maintained through mitochondrial turnover, encompassing mitophagy removing damaged mitochondria and mitochondrial biogenesis responsible for the emergence of new organelles. Dynamic processes of mitochondrial fusion and fission can also contribute to the maintenance of a healthy mitochondrial population. Mitochondrial fusion and fission have not yet been proven in cardiomyocytes, although these cells possess all the proteins required for these events. These processes, however, take on the importance during pathological conditions, when changes in the amount of protein applied in the mitochondrial dynamics occur. The modification in mitochondrial phenotype leads to the cell damage. Understanding the role of mitochondrial dynamics in myocardium may contribute to the development of new heart diseases treatments.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.