National Repository of Grey Literature 10 records found  Search took 0.02 seconds. 
Optimization of bioethanol production by Zymomonas mobilis
Andrlová, Kateřina ; Vítová, Eva (referee) ; Babák, Libor (advisor)
Diploma thesis deals with use of Zymomonas mobilis for the production of bioethanol from waste paper. There were used three kinds of substrate (cardboard, drawing and office paper) to optimize of bioethanol production. Individual papers were subjected to the same pre treatment, namely a milling, a combination of microwave irradiation and NaOH, a combination of microwave irradiation and H2SO4 and combination microwave irradiation, H2SO4 and NaOH. The substrates were decomposed by enzymatic hydrolysis after pre treatment to evaluate the best pre-treatment. Simultaneous saccharification and fermentation was carried out for each substrate (with two of the best pre-treatment). The samples were taken during the hydrolysis and the simultaneous saccharification and fermentation, and were determined by HPLC. Growth curves of Zymomonas mobilis were constructed, as the most appropriate for SSF was chosen temperature of 40 ° C in which the exponential phase took place at the time of 6 15 hours. During hydrolysis was monitored glucose concentration in the solution. The maximum concentration of glucose was in the cardboard (microwaves + H2SO4 + NaOH) 16.46 gdm-3, a drawing (microwaves + H2SO4 + NaOH) 31.78 gdm-3, and office paper (microwaves + H2SO4) 25.04 gdm-3. The concentration of ethanol for SSF was highest in the same cases as in the hydrolysis. The cardboard was the maximum concentration of bio ethanol 9.5 gdm-3, for the drawing 16.1 gdm-3 and for the office paper 12.13 gdm-3.
Screening of extremozyme production of selected extremophilic PHA producers
Dyagilev, Dmitry ; Obruča, Stanislav (referee) ; Pernicová, Iva (advisor)
This bachelor thesis deals with the screening of the production of extracellular hydrolytic enzymes in thermophilic microorganisms of the genera Aneurinibacillus, Brevibacillus, Chelatococcus, Pseudomonas, Schlegelella, Tepidimonas and Caldimonas. The ability of selected enzymes, namely proteases, lipases, amylases, xylanases, cellulases and pectinases, was tested in the investigated microorganisms. Such testing made it possible to assess in which microorganisms the production of specific enzymes can be observed. Based on the results of the screening, it was found that Schlegelella aquatica LMG 23380, Tepidimonas fonticaldi LMG 26746 and the investigated microorganisms of the genus Chelatococcus did not show the ability to produce any of the tested enzymes extracellularly. In natural isolates of Brevibacillus borstelensis LK 99 and Aneurinibacillus thermoaerophilus LK 102, only the ability to produce lipolytic enzymes was detected. The isolate Brevibacillus borstelensis Bz acts as a universal producer of all selected extremozymes. Enzyme activity was determined for selected producers. The bacterium Brevibacillus borstelensis Bz proved the ability to produce all six selected hydrolytic enzymes and has the highest activity of lipases, xylanases, cellulases and pectinases from the tested microorganisms. The highest proteolytic activity was measured in Thermomonas hydrothermalis DSM 14834 when cultured on skimmed milk powder.
Immobilization of selected glycanohydrolases
Reichstädter, Marek ; Trachtová, Štěpánka (referee) ; Omelková, Jiřina (advisor)
The theoretical part of this thesis deals with cellulolytic enzymes, their microbial producers, the possibilities of using such enzymes in the industry and how can be enzymes - not only cellulolytic - immobilized. Experimental part examines the preparations created by immobilizing various amounts of the commercially used cellulolytic complex Cellulast 1.5L onto various synthetic carriers made of polyethylene terephthalate - commercially used Sorsilen, PET carrier and glutaraldehyde-treated PET carrier. Enzyme activity of these preparations was determined by Somogyi - Nelson method by spectrophotometry. For the highest activity immobilized preparation was determined the temperature- and the pH-optimum. The difference in effects change between the free and immobilized enzyme by measuring viscosity decrease of the substrate depending on the degradation of glycosidic bonds was also studied.
Use of Kluyveromyces marxianus to bioethanol produce from waste paper
Tomečková, Andrea ; Hrstka, Miroslav (referee) ; Babák, Libor (advisor)
The diploma thesis is focused on production possibilities of bioethanol from waste paper by yeast Kluyveromyces marxianus. Waste cardboard was used as a potential substrate for bioethanol production. Several methods for cardboard preparation were introduced and compared as well as methods of fermentation. Simultaneous sacharification and fermentation and separate hydrolysis and fermentation of preprepared cardboard paper were performed in different pH buffer (4,8-7). Simultaneous sacharification and fermentation was held at a temperature of 45°C. Hydrolysis in separate hydrolysis and fermentation was performed at 50°C and fermentation at 25°C. Procedures outputs were obtained by sampling in specific time intervals and samples were analyzed by HPLC for presence and concentration glucose and ethanol. The results of the analysis have shown that the highest concentration of glucose produced by enzymatic hydrolysis was achieved by using microwaves, 2% H2SO4 and 2% NaOH pretreated paperboard at pH 4,8. The highest yield of ethanol was obtained by separate hydrolysis and fermentation of pulp pretreated by microwaves, 2% H2SO4 and 2% NaOH in pH 5,4 buffer. The method SHF proved to be more effective for the production of ethanol than SSF.
Screening of extremozyme production of selected extremophilic PHA producers
Dyagilev, Dmitry ; Obruča, Stanislav (referee) ; Pernicová, Iva (advisor)
This bachelor thesis deals with the screening of the production of extracellular hydrolytic enzymes in thermophilic microorganisms of the genera Aneurinibacillus, Brevibacillus, Chelatococcus, Pseudomonas, Schlegelella, Tepidimonas and Caldimonas. The ability of selected enzymes, namely proteases, lipases, amylases, xylanases, cellulases and pectinases, was tested in the investigated microorganisms. Such testing made it possible to assess in which microorganisms the production of specific enzymes can be observed. Based on the results of the screening, it was found that Schlegelella aquatica LMG 23380, Tepidimonas fonticaldi LMG 26746 and the investigated microorganisms of the genus Chelatococcus did not show the ability to produce any of the tested enzymes extracellularly. In natural isolates of Brevibacillus borstelensis LK 99 and Aneurinibacillus thermoaerophilus LK 102, only the ability to produce lipolytic enzymes was detected. The isolate Brevibacillus borstelensis Bz acts as a universal producer of all selected extremozymes. Enzyme activity was determined for selected producers. The bacterium Brevibacillus borstelensis Bz proved the ability to produce all six selected hydrolytic enzymes and has the highest activity of lipases, xylanases, cellulases and pectinases from the tested microorganisms. The highest proteolytic activity was measured in Thermomonas hydrothermalis DSM 14834 when cultured on skimmed milk powder.
Study of culturable anaerobic bacterial communities living in symbiosis with bark beetles; its isolation, taxonomy and biotechnical potential.
Fabryová, Anna ; Garcia-Fraile, Paula (advisor) ; Mrázek, Jakub (referee)
Microbial enzymes implicated in plant cell hydrolysis may have several potential aplications such as biomass degradation biocatalysts or with biofuel production. Bark beetles establish symbiosis with several microbial strains which play different roles benifitting the beetle, as the production of hydrolytic enzymes to degrade the ingested wood, the protection against mirobial antagonist or the detoxification of the environment. Fungal symbionts have been traditionally the best studied, but several recent research with bacterial symbionts of several bark beetle species show that bacterial also display important functions for the host. In this study, the bacterial communities of the bark beetle species Cryphalus piceae and Pithophtorus pithophtorus, collected in the Czech Republic from pine and fir trees, respectively, were isolated and 55 out of 89 samples were identified by 16S rRNA gene amplification and sequencing. Members of the genera Erwinia, Pantoea, Curtobacterium, Yersinia, Pseudomonas and Staphylococcus were detected. The isolates were object of study for their possible biotechnological potential in (ligno)cellulose materials degradation by screening several enzymes implicated in plant cell hydrolysis, as cellulases, xylanases, amylases, laccases, as well as their capability for colorant...
Immobilization of selected glycanohydrolases
Reichstädter, Marek ; Trachtová, Štěpánka (referee) ; Omelková, Jiřina (advisor)
The theoretical part of this thesis deals with cellulolytic enzymes, their microbial producers, the possibilities of using such enzymes in the industry and how can be enzymes - not only cellulolytic - immobilized. Experimental part examines the preparations created by immobilizing various amounts of the commercially used cellulolytic complex Cellulast 1.5L onto various synthetic carriers made of polyethylene terephthalate - commercially used Sorsilen, PET carrier and glutaraldehyde-treated PET carrier. Enzyme activity of these preparations was determined by Somogyi - Nelson method by spectrophotometry. For the highest activity immobilized preparation was determined the temperature- and the pH-optimum. The difference in effects change between the free and immobilized enzyme by measuring viscosity decrease of the substrate depending on the degradation of glycosidic bonds was also studied.
Use of Kluyveromyces marxianus to bioethanol produce from waste paper
Tomečková, Andrea ; Hrstka, Miroslav (referee) ; Babák, Libor (advisor)
The diploma thesis is focused on production possibilities of bioethanol from waste paper by yeast Kluyveromyces marxianus. Waste cardboard was used as a potential substrate for bioethanol production. Several methods for cardboard preparation were introduced and compared as well as methods of fermentation. Simultaneous sacharification and fermentation and separate hydrolysis and fermentation of preprepared cardboard paper were performed in different pH buffer (4,8-7). Simultaneous sacharification and fermentation was held at a temperature of 45°C. Hydrolysis in separate hydrolysis and fermentation was performed at 50°C and fermentation at 25°C. Procedures outputs were obtained by sampling in specific time intervals and samples were analyzed by HPLC for presence and concentration glucose and ethanol. The results of the analysis have shown that the highest concentration of glucose produced by enzymatic hydrolysis was achieved by using microwaves, 2% H2SO4 and 2% NaOH pretreated paperboard at pH 4,8. The highest yield of ethanol was obtained by separate hydrolysis and fermentation of pulp pretreated by microwaves, 2% H2SO4 and 2% NaOH in pH 5,4 buffer. The method SHF proved to be more effective for the production of ethanol than SSF.
Optimization of bioethanol production by Zymomonas mobilis
Andrlová, Kateřina ; Vítová, Eva (referee) ; Babák, Libor (advisor)
Diploma thesis deals with use of Zymomonas mobilis for the production of bioethanol from waste paper. There were used three kinds of substrate (cardboard, drawing and office paper) to optimize of bioethanol production. Individual papers were subjected to the same pre treatment, namely a milling, a combination of microwave irradiation and NaOH, a combination of microwave irradiation and H2SO4 and combination microwave irradiation, H2SO4 and NaOH. The substrates were decomposed by enzymatic hydrolysis after pre treatment to evaluate the best pre-treatment. Simultaneous saccharification and fermentation was carried out for each substrate (with two of the best pre-treatment). The samples were taken during the hydrolysis and the simultaneous saccharification and fermentation, and were determined by HPLC. Growth curves of Zymomonas mobilis were constructed, as the most appropriate for SSF was chosen temperature of 40 ° C in which the exponential phase took place at the time of 6 15 hours. During hydrolysis was monitored glucose concentration in the solution. The maximum concentration of glucose was in the cardboard (microwaves + H2SO4 + NaOH) 16.46 gdm-3, a drawing (microwaves + H2SO4 + NaOH) 31.78 gdm-3, and office paper (microwaves + H2SO4) 25.04 gdm-3. The concentration of ethanol for SSF was highest in the same cases as in the hydrolysis. The cardboard was the maximum concentration of bio ethanol 9.5 gdm-3, for the drawing 16.1 gdm-3 and for the office paper 12.13 gdm-3.
The study of enzyme activities in compost
Pernicová, Iva ; doc.Mgr.Pavlína Pelcová, Ph.D. (referee) ; Voběrková, Stanislava (advisor)
This thesis deals with the determination of enzyme activities in compost for consideration their changes during the composting. The changes in the activity of particular enzymes serve as the indicators of the activity of microorganisms, which are found in the compost. In the practical part of the work the changes in activity of proteases, cellulases, lipases, dehydrogenases and ureases within 21 days of composting under laboratory conditions were determined. The change in pH was observed as well. The changes in the pH-values and all enzyme activities except ureases present in the first week the same trend associated with the use of available substrates. The changes in the activities of the key enzymes in compost under laboratory conditions were compared with the changes in activities in compost under real conditions, which is the indicator of the different composting process under the given circumstances.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.