National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Deasign and development of programable notch filter for audio circuits
Dohnal, Jaroslav ; Prokop, Roman (referee) ; Háze, Jiří (advisor)
This thesis discusses harmonic distortion and its measurement in the audio bandwidth using notch and tracking notch filters. The first chapter defines harmonic distortion and ways how harmonic distortion can be measured. The second chapter describes different notch filter topologies and their realizations for use in an audio band. It also describes the tracking part of a tracking notch filter. The third chapter shows a design of a notch filter using the state-variable topology, board layout and a control module for this programmable notch filter. It also describes A/D converter with USB interface used for making measurements in chapter four.
Active Frequency Filters for Higher Frequencies
Fröhlich, Lubomír ; Dostál, Tomáš (referee) ; Biolek, Dalibor (referee) ; Sedláček, Jiří (advisor)
This thesis deals with the synthesis and optimization of frequency analogue filters with modern active elements usable for higher frequencies. The thesis is divided into three parts, the first part deals with the problematic concerning Leap-Frog combined ARC structure. Due to a difficult design, this method is not described in a detail and used in practice, although it shows e.g. low sensitivity. Firstly, a complete analysis of individual filters was made (for and T endings) and consequently these findings were used during implementation of this method to NAF program. Finally, samples of real filters were realized (for verification of functioning and correct design). Another very interesting topic concerning filters is usage of coupled band-pass for small bandwidth, where it is necessary to solve the problems concerning ratio of building elements values, but also price, quality, size of coils, sensitivity, Q factors, coefficients etc. That is why in practice a coil is very often substituted with other equivalent lossy and lossless blocks which create ARC filters structure. The design and the possibility of usage of lossy grounded elements were described here (such as synthetic inductors, frequency dependent negative resistor). Some parts of the design are individual computer sensitivity analysis, setting of usage and quality comparison of individual lossy grounded blocks. Besides, a program for these elements was created, it is useful for a quick design and depiction of transfer characteristics. The third part deals with the usage of tuning universal filters consisting three or more operational amplifiers, which secures its universality and possibility to create different kinds of transfer characteristic. In practice, Akerberg - Mossberg and Kerwin - Huelsman - Newcomb are the most used types of filters. These were also compared with less common universal filters. In the end, the possibility of digital tuning of universal filter with the help of digital potentiometers for filters of 10th order and frequency around 1 MHz was shown.
Deasign and development of programable notch filter for audio circuits
Dohnal, Jaroslav ; Prokop, Roman (referee) ; Háze, Jiří (advisor)
This thesis discusses harmonic distortion and its measurement in the audio bandwidth using notch and tracking notch filters. The first chapter defines harmonic distortion and ways how harmonic distortion can be measured. The second chapter describes different notch filter topologies and their realizations for use in an audio band. It also describes the tracking part of a tracking notch filter. The third chapter shows a design of a notch filter using the state-variable topology, board layout and a control module for this programmable notch filter. It also describes A/D converter with USB interface used for making measurements in chapter four.
Active Frequency Filters for Higher Frequencies
Fröhlich, Lubomír ; Dostál, Tomáš (referee) ; Biolek, Dalibor (referee) ; Sedláček, Jiří (advisor)
This thesis deals with the synthesis and optimization of frequency analogue filters with modern active elements usable for higher frequencies. The thesis is divided into three parts, the first part deals with the problematic concerning Leap-Frog combined ARC structure. Due to a difficult design, this method is not described in a detail and used in practice, although it shows e.g. low sensitivity. Firstly, a complete analysis of individual filters was made (for and T endings) and consequently these findings were used during implementation of this method to NAF program. Finally, samples of real filters were realized (for verification of functioning and correct design). Another very interesting topic concerning filters is usage of coupled band-pass for small bandwidth, where it is necessary to solve the problems concerning ratio of building elements values, but also price, quality, size of coils, sensitivity, Q factors, coefficients etc. That is why in practice a coil is very often substituted with other equivalent lossy and lossless blocks which create ARC filters structure. The design and the possibility of usage of lossy grounded elements were described here (such as synthetic inductors, frequency dependent negative resistor). Some parts of the design are individual computer sensitivity analysis, setting of usage and quality comparison of individual lossy grounded blocks. Besides, a program for these elements was created, it is useful for a quick design and depiction of transfer characteristics. The third part deals with the usage of tuning universal filters consisting three or more operational amplifiers, which secures its universality and possibility to create different kinds of transfer characteristic. In practice, Akerberg - Mossberg and Kerwin - Huelsman - Newcomb are the most used types of filters. These were also compared with less common universal filters. In the end, the possibility of digital tuning of universal filter with the help of digital potentiometers for filters of 10th order and frequency around 1 MHz was shown.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.