National Repository of Grey Literature 31 records found  beginprevious22 - 31  jump to record: Search took 0.01 seconds. 
Influence of solidification conditions on structure and properties of austenitic chrome-nickel steels
Ambrož, Ondřej ; Čech, Jan (referee) ; Záděra, Antonín (advisor)
The thesis deals with the influence of solidification conditions on structure and mechanical properties of austenitic stainless steels. The first part involves the distribution of stainless steels and a basic understanding of the issue of achieving the desired structure and mechanical properties. The second part is focused on austenitic steels and their basic characteristics. This section also describes the experiment and the results achieved. Finally, these results were evaluated and further research steps were recommended.
The effect of σ-phase formation on long-term durability of SUPER 304H steel
Horváth, J. ; Král, Petr ; Janovec, J. ; Sklenička, Václav
This work presents results of the analysis of phases formed in a SUPER 304H steel during a medium-term static isothermal ageing (675 degrees C/15000 h). The investigations of the precipitates were especially focused on the occurrence of sigma-phase because its formation leads to the serious embrittlement. \nThe evaluation and distribution of brittle sigma-phase were determined on macroscopic level by using light microscopy/colour etching. The microstructure was also investigated on microscopic level by scanning electron microscopes Tescan Lyra 3 and JEOL JSM 5410 equipped by electron backscatter diffraction unit and by transmission electron microscope Jeol 2100F. This work also investigates the effect of sigma-phase formation on the impact strength of an aged state of SUPER 304H steel. For comparison reasons the microstructure and the mechanical properties of the initial as-received) state were also investigated. It was found that the formation of brittle sigma-phase in the aged and therefore degraded microstructure led to the significant decrease of the impact strength. The influence of brittle sigma-phase on long-term durability of the degraded steel regarding its insufficient impact strength is discussed.
Electron beam welding of Ti 6Al 4V
Skalka, Jan ; Dupák, Libor (referee) ; Mrňa, Libor (advisor)
The thesis is dedicated to welding combination of titanium alloy Ti-6Al-4V and austenitic steels 1.4301 by electron beam. Based on literature studies of bonding titanium and its alloys with steels, it was proposed to select for welding interlayer of copper, which could limit the impact of intermetallic phases on the mechanical properties of the weld seam and enable the creation of weld. For welding the pipe samples were used three methods of welding with various welding parameters. Samples which remain after thermal cycling vacuum-tight, were then further analyzed (micro-hardness, tensile test, etc.).
Decarburization of austenitic steels and its influence on material properties
Vítek, Radovan ; Zemčík, Ladislav (referee) ; Šenberger, Jaroslav (advisor)
This master´s thesis deals with theoretical study of decarburization of austenitic steels. Mathematical model, which analyse numerical calculations, was compared with experiments. Obtained results were discussed considering validity of model and performed aproximations.
PROPAGATION OF LONG FATIGUE CRACKS IN AUSTENITIC STEEL UNDER SHEAR MODES II AND III
Holáň, Libor ; Man, Jiří (referee) ; Polák, Jaroslav (referee) ; Pokluda, Jaroslav (advisor)
This work is focused on the realization of experiment allowing simultaneous loading under mode II and III in a single circular specimen. Proposed experiment allowed to minimize crack closure during the cyclic loading and obtained values of thresholds of stress intensity range can be considered to be very close to effective values. This was attained by means of an unique experimental devices and procedure of preparation of pre-crack of specimen with circumferential notch, which was made of stainless austenitic steel. The obtained values were compared with theoretical models with the support of molecular dynamics and ab-anitio calculation. Based on observation was found out, that fatigue crack propagation is controlled by decohesion model in austenitic steel. The morphology of fracture surfaces was studied by means of optical chromatographie and 3D stereophotogrammetry, which allowed a comparison of created morphology under shear modes II and III. Morphology of fracture surface formed (static and cyclic loading) by pre-crack was also studied by means of selected roughness parameters. The mechanism of deflection (kink) of crack growth under mode II was defined.
Influence of chemical composition of steel on structure and properties of stainless steels
Valenta, Pavel ; Čech, Jan (referee) ; Záděra, Antonín (advisor)
The thesis is focused on high-alloy austenitic and austenitic-ferritic (duplex) steel. The theoretical part includes research about high-alloy steels and basic introduction to this issue. In the practical part of the test there were casted refractory austenitic steel 30CH3N17G2L, duplex stainless steel 1.4462, low carbon steel and high carbon steel. On the castings of austenitic steel were made mechanical and technological tests. There were evaluated the effects of different casting temperature and casting wall thickness to the microstructures and macrostructures of steel, tensile strength and charpy impact tests. The technological tests compared technological properties of these steels.
Structural stability heterogeneous weldment of carbon/austenitic steels
Havlík, Petr ; Stránský, Karel (referee) ; Foret, Rudolf (advisor)
Heterogeneous welded joints – type ferrite/austenite is inseparable part of structure for energy industry. Welding conditions and post weld heat treatment have a significant impact on the structural stability of welded joint. The structure determines resulting mechanical properties that determine lifetime of these joints. At the same time in microstructure changes in heat affected zone of the base material is diffusion of carbon through the weld interface. This work is focused on the analysis of structural stability of heterogeneous weld carbon/austenitic steel, which was formed carbon steel 22K (base material) and austenitic buttering layer EA 395/9 with a higher content of nickel. Evaluation of the structure was focused on the structure of weld metal (Böhler FOX SAS 2) and structure of the heat affected zone of base material. Metallographic evaluation was performed on the light microscope and scanning electron microscope equipped with the energy and wave dispersive analysis, which identified the contents of substitutional elements and carbon on the interface of carbon/austenitic steel. The results of metallographic analysis were compared with measurements of Vickers hardness and microhardness and calculations using Thermo-Calc software and software SVARY. The description and evaluation of the stability of the weld joints was determined by carbon content of the course interface using wave dispersive spectroscopy. The results of energy dispersive analysis were used to determine the type of carbides present at the interface of carbon/austenitic steel.
Microstructural Investigation and Mechanical Testing of an Ultrafine-grained Austenitic Stainless Steel
Chlupová, Alice ; Man, Jiří ; Polák, Jaroslav ; Karjalainen, L. P.
Special thermomechanical treatment based on high degree deformation followed by reversion annealing was applied to 301LN austenitic stainless steel to achieve ultrafine-grained (UFG) structure with considerably enhanced mechanical properties. Two different conditions of the thermomechanical treatment were adopted and resulting microstructures with different grain sizes were characterised by optical and high resolution scanning electron microscopy (SEM-FEG). Hardness measurements and tensile tests were performed to characterize mechanical properties. To reveal structural changes induced during thermomechanical treatment and during tensile tests a magnetic induction method was additionally applied. Experimental study validated the ability of the above special treatment to produce austenitic stainless steel with grain size about 1.4 m which exhibits tensile strength about 1000MPa while ductility remains on level about 60 %. The results obtained for both thermomechanical conditions are compared and the relationship between microstructure refinement, phase content and mechanical properties is discussed.
Manufacturing of Solar Absorber by Unconventional Methods
Mrňa, Libor ; Lidmila, Z. ; Podaný, K. ; Forejt, M. ; Kubíček, J.
Solar absorbers of flat type have the advantage of relatively simple production, but on the other hand, they have lower thermal efficiency and require perpendicular incidence of solar radiation on their surface. This contribution presents new type of solar absorbers where the above-mentioned disadvantages are reduced while keeping relative production simplicity. The solar absorber is characterized by the creation of the appropriate spatial structure in sheet metal by forming through a technology of drawing in flexible tools. This spatial structure not only increases the heat-transfer surface but also eliminates the need for perpendicular incidence of the incoming solar radiation. The component with this structure is fixed to the rear side of the absorber by laser welding. Inlet holes for the fluid are produced by Flow drill method.
Mikrostrukturní interpretace efektivní meze únavy konstrukčních ocelí
Pokluda, J. ; Kondo, Y. ; Slámečka, K. ; Kozák, Vladislav ; Horníková, J. ; Šandera, P.
In the case of plain strain conditions the shear misfit of crack flanks causing the roughness-induced crack closure is determined.

National Repository of Grey Literature : 31 records found   beginprevious22 - 31  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.