National Repository of Grey Literature 56 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Study on relaxation properties of hydrogels using rheological techniques
Lorenc, Pavel ; Klučáková, Martina (referee) ; Smilek, Jiří (advisor)
Submitted bachelor’s thesis deals with the study of relaxation and time stress of viscoelastic substances (hydrogels) using selected rheological techniques, especially with regard to oscillation tests. Hydrogels with different types of crosslinking were prepared and their properties were compared during the measurement. Agarose hydrogels (physically), alginate hydrogels (physicochemically), polyvinyl alcohol hydrogels (chemically) and hyaluronic acid hydrogels (ionically). In this bachelor's thesis, methods for measuring the relaxation properties of these hydrogels using a rheometer were designed and subsequently applied. We examined the relaxation properties of hydrogels using time-dependent tests that examined changes in amplitude over time. We performed a test that had 3 intervals, in which we monitored the response of hydrogels to the changes by changing the amplitudes of deformation with time. The relaxation properties of these hydrogels were studied, which showed significant differences in the behavior of hydrogels in measurements.By these methods, it was found that the structure of hydrogels and concentrations have an influence on relaxation. From the measured results, it was shown that the best relaxing properties have chemically crosslinked polyvinyl alcohol hydrogel, the lowest ability to relax was shown by physico-chemically crosslinked alginate hydrogel.The results from the measured data were finally compared, assessed and commented on the differences between the individual hydrogels.
Development of a new type of energy drinks containing natural active components
Vysoká, Marie ; Němcová, Andrea (referee) ; Skoumalová, Petra (advisor)
The aim of this thesis is the development and preparation of a new energy drink. The theoretical part of the thesis focuses on the comparison of the drinks available in market, the presentation of the main active ingredients and the proposal of enriching the new energy drink. It also describes the possibility of using an encapsulation and the method used to determine specific compound in energy drink or encapsulated particles. In the experimental part of the work, at the beginning, the main content of energy drinks were characterized, for instance caffeine, sugar, polyphenol and vitamin C. Subsequently the energy drink based on selected types of loose teas that were enriched with the encapsulated extract of acai, acerola, maca, goji and ginseng was designed. All extracts contained large amounts of polyphenols and antioxidants. In addition, acerola extracts contained very high amounts of vitamin C. Two types of particles, alginate particles and liposomes were prepared for encapsulation. For all particles, encapsulation efficiency, size, stability, and antioxidant activity were determined. Long-term stability was then monitored within three months. The particles were also exposed to artificial gastric, pancreatic and bile juice. All tested particles showed very good encapsulation efficiency. In terms of long-term storage stability in an aqueous environment. Particularly liposome particles, which also showed high stability by zeta potential measurement, were suitable. On the contrary, in case of alginate particles, when stored in an aqueous medium, the release of active substances occurred. Finally, an energy drink was created and subjected to sensory analysis. The best energy drink was based on black or green tea with alginate particles acai, goji and ginseng.
Encapsulation of probiotics and prebiotics for use in nutritional products for children
Šnajdarová, Karolína ; Němcová, Andrea (referee) ; Skoumalová, Petra (advisor)
The Diploma thesis deals with designing of probiotic dietary supplement for children with strains Lactobacillus acidophilus and Bifidobacterium breve and with prebiotics. Used prebiotics were Inulin, Chia fiber, Bamboo fiber, Chlorella + Spirulina and Yakon syrup. The theoretical part is focused on probiotics, prebiotics and their biological influence. In experimental part the possibilities of encapsulation into alginate particle and lyophilisation of probiotic cells were observed to find their good form to final nutritional product for children. Several types of probiotic with addition of prebiotics were tested in model conditions of gastrointestinal tract. It was found that addition of prebiotic highly increases viability of probiotic cells and their resistance to model conditions of gastrointestinal tract. In this case, the best prebiotic was found in Yakon syrup. The prebiotics were also characterised in terms of nutritional composition, amount of total and reducing sugars, oligosaccharides, proteins, lipids, polyphenols and chlorophyll were obtained. Finally, Chia fiber, Chlorella + Spirulina and Yakon syrup were chosen as prebiotics with best characterisation/properties. In conclusion, a dietary supplement with lyophilized alginate particles containing probiotic cells and with the most appropriate prebiotics were designed. Forms of the product were powder and gummy-bear.
Isolation and characterization of natural active components and their application in food supplements
Šmídová, Veronika ; Němcová, Andrea (referee) ; Skoumalová, Petra (advisor)
The diploma thesis is focused on the characterisation and isolation of naturally occurred active compounds, especially on lipophilic compounds. The next part of the thesis deals with enzymes and their encapsulation into alginate particles to suggest new enzymatic dietary supplement for children with optimal nutrient composition. The theoretical part is focused on the issue of child nutrition, accordingly the necessary nutrients that children need to grow without any health difficulties. It is also focused on the availability of enzymatic food supplements for children. Finally, the theoretical part deals with the lack of chosen natural substances and their effects in connection with cancer. In the experimental part, four types of oils obtained from seeds were characterized. The oils were obtained by two methods: cold pressing with a Yoda kitchen press and extraction in an organic solvent with Soxtherm. Seeds were linseed, sesame, pumpkin, and cumin. With these oils were characterized natural active substances, polyphenols, flavonoids, antioxidants, carotenoids, chlorophylls, and fatty acids. Liposomes were also prepared from selected extracts, in which an effect on intestinal tumour cells were observed. Furthermore, some enzymes were selected, and they were encapsulated into alginate particles with average size 450 µm. In these particles was specified encapsulation efficiency as well as the proteolytic activity after testing in digest juices. The last part of this thesis was focused on the optimization of a complete enzymatic food supplement with addition of alginate particles as enzyme carriers. Samples of these supplements were finally subjected to a sensory analysis.
Use of microcalorimetry in the study of hydration of biopolymers
Bola, Tomáš ; Smilek, Jiří (referee) ; Krouská, Jitka (advisor)
This master thesis deals with the using of microcalorimetry in the study of hydration of biopolymers. Lactose has been selected together with the other biopolymers although it is not among biopolymers but disaccharides. Selected biopolymers are alginate, dextrane, chitosan and hyaluronan of two molecular weights. Lactose has been selected for these purposes mainly because it is a model example to determine whether or not the reaction to moisture between the other samples and the saturated salt solution occurs. The biopolymer hydration study, as opposed to the commonly used perfusion calorimetry method using the possibility of measuring with adjustable moisture has been used an isothermal microcalorimetry method where at two constant temperatures the reaction of the sample to the different moisture released by the saturated salt solution was monitored.
Preparation and characterization of hybrid hydrogels matrix
Magera, Lukáš ; Kalina, Michal (referee) ; Smilek, Jiří (advisor)
Submitted bachelor’s thesis aims for preparation and subsequent optimisation of hybrid hydrogels, which represent material with high application potential because of their unique properties. Hybrid hydrogels have extraordinary mechanical resistance and other beneficial properties (e.g. transportation) due to their unique hybrid network structure, strong interpenetrating network entanglement and efficient energy dissipation system. This work engages in chemically-physically crosslinked hybrid gel, namely the combination of alginate-polyacrylamide. The hybrid hydrogel was formed and then underwent the tests of drying and swelling. The main purpose of the experimental part was to determine viscoelastic properties of hybrid hydrogels using standard oscillation tests. Swelling tests showed that the hybrid network containing limitedly swelling alginate gel reaches lower degree of swelling than the single unlimitedly swelling polyacrylamide gel. Viscoelastic tests unveiled an influence on the mechanical properties by value augmentation of the hybrid gel´s storage modulus in comparison with the reference alginate hydrogel. Hybrid hydrogel reported an increase in the linear viscoelastic area compared to the reference polyacrylamide gel, whose hybrid structure prevents from creating microcracks, that caused earlier rupture of the reference polyacrylamide gel.
Study of barrier and transport properties of polyelectrolytes using diffusion techniques in hydrogels
Valentová, Kristýna ; Kalina, Michal (referee) ; Smilek, Jiří (advisor)
This diploma thesis was focused on study of barrier and transport properties of selected polyelectrolytes in hydrogel matrices by using diffusion techniques. The study of these properties was performed in horizontal diffusion cells where is observed the change in diffusion probe concentration over time. Diffusion experiments were performed on an agarose hydrogel with the addition of alginate, hyaluronic acid, polystyrene sulfonate, humic acids and as a model probe rhodamine 6G was used. Important parts of this thesis are also the methods which characterize the substances and hydrogel matrices such as rheology and potentiometric titration. The main aim of this diploma thesis was to investigate the effect of interactions between passing model dye (rhodamine 6G) and the appropriate gel (agarose + polyelectrolyte) on the fundamental diffusion parameters (effective diffusion coefficient, lag time, etc.).
Adhesion of (Hydro)gel Materials to the Surface – Physico-chemical Description and Biological Concequences
Žibeková, Lucia ; Mravec, Filip (referee) ; Kalina, Michal (advisor)
This Bachelor´s thesis deals with study of adhesion of hydrogels materials to the surface. Three biopolymers were selected for this purpose, one of which is psychically cross-linked (agarose) and two are chemically cross-linked (based on sodium alginate cross-linked with Ca2+ and polyvinyl alcohol cross-linked with borax). In the experimental part of the work, adhesion was first examined by a visual method on an inclined plane. The tilt was at different angles (30°, 45°, 90°) where it was observed whether the hydrogel was able to attach to a solid surface or slip down. The agarose was examined in different concentrations from 0.5 wt% to 4 wt% in both methods. Also, the alginate gel was examined at various concentrations with two different cross-linked agent. However, alginate was only used in the visual method because of its inhomogeneity. In contrast, the PVA gel was examined at 10:1 and 4:1 ratios for the both methods. The second method in the experimental part was the tensile test carried out on the Inova apparatus – hydraulic pulsator, and thus the methodology for the study of physical and chemically cross-linked hydrogels was optimized. With increasing concentration of agarose gels, adhesion strength and work increased as well. For PVA gels, the adhesion work was higher, but the adhesive strength remained approximately the same as for the agarose gels.
Preparation and characterization of enzyme-containing wound dressings
Jurová, Bronislava ; Szotkowski, Martin (referee) ; Skoumalová, Petra (advisor)
This diploma thesis is focused on the study and characterization of nanofiber wound dressings from natural biopolymers. Proteolytic enzymes, specifically collagenase and bromelain, were incorporated into these nanofiber covers. The theoretical part deals with a brief description of skin wounds, their healing and skin covers. There are also methods for preparing these covers and the methods used to characterize them. The practical part deals with the optimization of the preparation of nanofiber coatings based on polyhydroxybutyrate, gelatin, alginate and chitosan. These nanofibers were then enriched with active substances and their gradual release into the model environment was monitored. Finally, their proteolytic activity was determined for these substances.
Incorporation of microbial cells in hydrogel carriers
Orišková, Sofia ; Pekař, Miloslav (referee) ; Sedláček, Petr (advisor)
The presented diploma thesis focuses on the use of plant growth promoting bacteria as an ecological alternative to conventional fertilizers. The incorporation of bacterial cells into hydrogel carriers is already a well-studied topic, but due to its disadvantages it has not yet found wider application in agriculture. This work offers a novel concept of encapsulating bacteria by gelation directly from the culture. This is achieved by crosslinking the bacterial alginate produced by the model microorganism Azotobacter vinelandii. Since this process was not described before, first its optimization was needed. Alginate production was determined gravimetrically, and its parameters were further characterized using available analytical methods – infrared spectroscopy to monitor structural parameters (monomer composition and the extent of acetylation), dynamic light scattering to characterize the size distribution and AF4-MALS-dRI to obtain the molecular weight. Bacterial PHB production was also investigated using gas chromatography and infrared spectroscopy. The second part of the work is focused on the optimization of the gelling process using bacterial alginate from the culture and CaCl2 as a crosslinking agent. Rheological experiments were used as a tool in understanding the viscoelastic properties of the prepared gels. Gelation was demonstrated within the first day after inoculation. Maximum production of alginate (1,9 ± 0,3) g/l was reached on the fourth day after inoculation. It was found that the addition of 5 g/l of calcium carbonate promotes the production of alginate. Nevertheless, further addition of CaCO3 (30 g/l) showed adverse effects on the molecular weight and is therefore not recommended. Production of PHB was confirmed by both FTIR and GC measurements, with a maximum yield of (23 ± 3) % CDW. Rheological testing confirmed that the product of the crosslinking was a gel. It was found that the crosslinker concentration plays an important role at time 0 min of the gelation, forming a denser network in the structure and causing higher rigidity. Using the highest studied concentration of CaCl2, the critical strain reached values of (5,0 ± 0,7) %. Finally, the incorporation of bacterial cells into the hydrogel was confirmed using fluorescence microscope.

National Repository of Grey Literature : 56 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.