National Repository of Grey Literature 141 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Computational tool for a stress-strain analysis of the mechanically loaded cylindrical moment shell
Tichý, Matej ; Profant, Tomáš (referee) ; Ševeček, Oldřich (advisor)
The aim of the bachelor´s thesis is to create a computational tool for a stress-strain analysis of the mechanically loaded cylindrical moment shell. MATLAB R2021b and its virtual tool App Designer were used for this purpose. The created tool will contain a basic graphical interface for easier entry of the input parameters of the solved task. The thesis will also compare the outputs of the analytical model with the numerical solution using the finite element method and will define possible limitations of the analytical model.
Stress-strain analysis of skull implant with fixators
Machala, Karel ; Votava, Tomáš (referee) ; Marcián, Petr (advisor)
A skull implant with fixators is used for the reconstruction of a damaged area of the skull, where a defect has occurred due to traumatic injury or disease. Nowadays, the production of a skull implant is preoperatively planned and employs modern technologies to achieve a patient-specific, customized approach. However, the manufacturing process of accurately fitting skull implants is associated with the challenge of achieving geometric precision and potential complications. The mechanical behaviour of the skull implant within the defect is a crucial factor that influences its functionality. This bachelor's thesis presents a comparison of distinct models of skull implant geometry at the interface between the implant and bone tissue, based on stress-strain analysis. Stress-strain states are determined using computational modelling utilizing the finite element method. Three variations of skull geometry models with the skull implant, considering different interfaces between the implant and bone tissue, were analysed. Additionally, for result comparison, a reference model of a skull without a defect was solved and analysed. The values of implant displacement were higher in cases where a gap was created at the interface between the implant and bone tissue. The stress values on the fixators were higher for the model variations with a gap created at the interface between the implant and bone tissue.
Stress-strain analysis of the process of continuous steel casting
Cabaj, Gabriel ; Petruška, Jindřich (referee) ; Návrat, Tomáš (advisor)
The thesis is focused on the development of a computational model for determination of stress and strain of a round billet in the process of continuous steel casting. The supplied material characteristics, the geometry of the continuous casting machine and the temperature distribution in the billet are applied as input data for stress and strain analysis. The computational model based on the finite element method is developed in the commercial software ANSYS. The thesis can be divided into three parts. The first part includes background information related to the continuous casting of steel and a research analysis of the computational modeling of this process. The second part describes the development of the planar and three-dimensional computational model in detail. Finally, the obtained stress and strain results are analyzed and general conclusions, and recommendations for further development are proposed.
Biomechanical study of the upper limb wrist
Kouřil, Jan ; Marcián, Petr (referee) ; Florian, Zdeněk (advisor)
This master´s thesis is focused on biomechanical study of wrist. There is a literature search on this theme in the beginning of this work. The thesis is described in detail anatomy of bones in the wrist. Subsequent the stress-strain analysis of physiological wrist is implemented in a neutral position. The model of geometry of wrist is created on base of CT data. To create calculation model and the solution is implemented in the computer system ANSYS Workbench.
Computational tool for a stress-strain analysis of the mechanically loaded circular and annular plate
Dohnal, Jakub ; Majer, Zdeněk (referee) ; Ševeček, Oldřich (advisor)
The bachelor's thesis primarily deals with the creation of a computational tool for stress-strain analysis of rotationally symmetric circular and intercircular plates. The commercial software MATLAB and its component APP DESIGNER were used for this purpose. The program uses analytical relationships of general solid mechanics to solve differential equations for several types of plates and loads. Part of the bachelor thesis is also a parametric study comparing the outputs of analytical and numerical model based on the finite element method, aimed at identifying the practical application of the analytical solution and its accuracy for a particular case of the plate.
Research study of mandible fracture reconstructions from a biomechanical standpoint
Semerák, Jaroslav ; Florian, Zdeněk (referee) ; Marcián, Petr (advisor)
This thesis deals with the treatment of mandibular fractures using splints and fixators. The topic was the development of a detailed research study based on available literature. The work also indicates basic anatomy of the surveyed area and nowadays the most commonly used materials. Then, the stress-strain analysis of the system broken mandible with angular stable fixation was performed. Stress-strain analysis solution was realized by computational modeling, in use of the finite element method in Ansys Workbench 16.2. The work is described in detail the creation of computational model system and its subsequent solutions.
Strength design of the aircraft spur
Profota, Martin ; Vosynek, Petr (referee) ; Vrbka, Jan (advisor)
This master thesis deals with computational stress-strain analysis of the tailskid of airplane L410 NG with main focus firstly the check current design of the tailskid and then the design another design solution with the able to absorb as much as possible the deformation energy. Solution of this problem is performed using computational modeling utilizing numerical simulation of quasi-static and crash deformation load of the tailskid with using explicit Finite Element Method (FEM) in program ABAQUS v6.14. After the introduction with problem situation and tailskid assembly introductory part is devoted to the research study of various designs of the tailskid for different types of airplanes. There follows these theoretical general principles of thin-walled structures and buckling of them. Before the creating of the computational model itself, the explicit form of the Finite Element Method is better described. The conclusion of this thesis deals with the mutual comparison of the most advantageous design variants of the tailskid and the selection of the most suitable one of them for the airplane L410 NG.
Stress-strain analysis of clamping mechanism element
Gergeľ, Erik ; Navrátil, Petr (referee) ; Skalka, Petr (advisor)
The bachelor thesis deals with creation of computational model and solves Stressstrain analysis of a car window clamping mechanism element. The main focus of thesis is to locate a critical area of part and find out the distribution of stress is this area. FEA system ANSYS was used for this analysis. The shape optimization based on results of FEA was successful. The equivalent stress was significantly lowered. It would be able to increase the operating time of clamping element.
Stress - strain analysis of save premolar tooth
Sáblíková, Zdeňka ; Fuis, Vladimír (referee) ; Florian, Zdeněk (advisor)
This diploma thesis deals with stress-strain analysis of healthy and save tooth. Defor-mation and stress of tooth system with a part of jawbone was solved by calculating method, FEM in computing system ANSYS Workbench 11. Stress-strain analysis of save of tooth was performed in twenty-five ways describing various classes and sizes of cavity, filling material and model of connection between the filling and the tooth.
Biomechanical Study of Hand
Krpalek, David ; Janíček, Přemysl (referee) ; Horyl, Petr (referee) ; Florian, Zdeněk (advisor)
This work deals with issue of human wrist and appropriate total wrist implant allowing a restoration of hand mobility approaching physiological condition after traumatic and degenerative diseases. Treating these diseases are very complex. These issues including a biological and medical issues. To determine the appropriate treatment method and select right total wrist implant is important to know the behavior the human wrist at all stages in terms of medical and biomechanical. For this reason, it was developed a biomechanical study including computation model of human wrist allowing solution of strain and stress of hand in physiological and pathological conditions and condition after total wrist implant. The frost remodeling of bone tissue was used for analysis of human wrist bone tissues and bone tissues after application of total wrist implant RE-MOTION™ Total Wrist.

National Repository of Grey Literature : 141 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.