National Repository of Grey Literature 118 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Analysis of economic data using statistical methods
Foltýnová, Andrea ; Doubravský, Karel (referee) ; Michalíková, Eva (advisor)
This bachelor thesis focuses on the financial and statistical analysis of the company called AREMA, s.r.o. At the beginning of the work, fundamental theories used for financial and statistical analysis are described. These theories are then applied in the analytical part of the thesis for the calculation of selected financial indicators and in the statistical part for the prediction of development in the upcoming two years. The last part is dedicated to the evaluation of the company's financial health, as well as the author's proposals for its improvement.
Wear model of material couple at high temperatures
Rychlý, David ; Adam, Ondřej (referee) ; Němec, Karel (advisor)
Hlavním cílem práce bylo vytvořit model opotřebení materiálové dvojice za vysokých teplot pro predikci opotřebení kinematického mechanismu na turbodmychadle. Predikce opotřebení je komplexní proces, kterého se účastní mnoho chemických, fyzikálních a mechanických jevů, a proto není jednoduché jej analyticky počítat. Tato práce se vydává naproti tomuto problému pomocí empirických vztahů z literatury a aplikace principů a algoritmů strojového učení (machine learning) postaveného na datech z experimentu. Empirické vztahy i metody strojového učení jsou v práci podrobeny důkladné rešerši a aplikovány na dostupná data z firmy Garrett Motion. Práce kriticky hodnotí vhodnost vybraného empirického vztahu I.G.Goryachevy pro adhezivní opotřebení jako primárního mechanismu opotřebení a variuje koeficienty pro výzkum využití rovnice. Na data jsou aplikovány algoritmy strojového učení a je prezentována architektura nejlepšího modelu – Support Vector Regression – spolu s metrikami, analýzou důležitosti vlastností (feature importance) a optimálním rozdělení datasetu pro trénink a testování. Závěrem práce doporučuje směry dalšího výzkumu a způsoby, jak zlepšit proces modelování pro tento konkrétní problém.
Numerical methods in economics
HRNČÍŘ, Pavel
The bachelor thesis focuses on the use of numerical methods in economic practice. The thesis describes the essence of interpolation and regression. Different methods of function approximation are presented. The aim of the thesis is to evaluate whether selected numerical methods, namely interpolation polynomial and linear regression, are suitable for predicting future values of economic variables based on historical data and whether interpolation polynomial is suitable for estimating missing values among known data. The economic variables worked with are the average annual inflation rate and the average gross monthly wage. The data of the economic variables are obtained from the Czech Statistical Office. A console application in the C# programming language has been developed for this work, which allows the calculation of the interpolation polynomial from the given data.
The Use of SVM in Environment of Financial Markets
Štechr, Vladislav ; Prochocká, Kristína (referee) ; Budík, Jan (advisor)
This thesis deals with use of regression or classification based on support vector machines from machine learning field. SVMs predict values that are used for decisions of automatic trading system. Regression and classification are evaluated for their usability for decision making. Strategy is being then optimized, tested and evaluated on foreign exchange market Forex historic data set. Results are promising. Strategy could be used in combination with other strategy that would confirm decisions for entering and exiting trades.
Predictor of the Effect of Amino Acid Substitutions on Protein Stability
Flax, Michal ; Martínek, Tomáš (referee) ; Musil, Miloš (advisor)
This paper deals with prediction of influence of amino acids mutations on protein stability. The prediction is based on different methods of machine learning. Protein mutations are classified as mutations that increase or decrease protein stability. The application also predicts the magnitude of change in Gibbs free energy after the mutation.
Determination of the formwork strength of concrete using a Silver Schmidt hardness tester
Janka, Marek ; Kocáb, Dalibor (referee) ; Cikrle, Petr (advisor)
This bachelor thesis deal with the issues of nondestructive testing of the formwork removal strength of concrete. It works with two different compositions of concrete and for both of them, it determines the relation between compressive strength and surface hardness obtained by the SilverSchimdt hammer with mushroom plunger. It shows inappropriateness of ultrasonic impulse method to determine formwork removal strength. It compares obtained relations with each other and with the literature. The goal of this thesis is to utilize determined relations for verification of minimal requested formwork removal strength during construction.
Deconvolution of hemodynamic response from fMRI data
Bartoň, Marek ; Kolář, Radim (referee) ; Havlíček, Martin (advisor)
This paper deals with the variability of HRF, which may have crucial impact on outcomes of fMRI neuronal activation detection in some cases. There are three methods described - averaging, regression deconvolution and biconjugate gradient method - which provide HRF shape estimation. In frame of simulations regression method, which uses B-spline curves of 4-th order for window length of 30 s, was chosen as the most robust method. Deconvolution estimates was used as HRF models for classic analyse of fMRI data, concretely visual oddball paradigm, via general linear model. Enlargement of localizated areas was observed and after expert consultation with scientific employees from neurology clinic, outcomes was evaluated as relevant. Furthermore Matlab application, which provides confortable observation of HRF variability among brain areas, was made.
Location Aware Analytics in the Context of Mobile Network Performance Optimization
Urbanová, Lucie ; Miloš, Jiří (referee) ; Slanina, Martin (advisor)
Předmětem této práce je polohově orientovaná analýza v kontextu optimalizace mobilních sítí. Popisuje nástroj pro odhadování základních parametrů sítě na místech s neznámými parametry sítě na základě databáze RTR NetTest. Je zde stručně představena oblast velkých dat, strojového učení a shrnutí o konceptu a funkcionalitě aplikace NetTest. Práce ukazuje a porovnává skupinu regresních metod na základě jejich komplexnosti a vhodnosti pro vytvoření map odhadovaných parametrů sítě. Po jejich důkladné 1D analýze je IDW a GPR analyzováno ve 2D a využito pro vytvoření skupiny map odhadu parametrů sítě. Je posouzena i jejich přesnost na základě referenčního měření aplikací NetTest.
Visipedia - Embedding-driven Visual Feature Extraction and Learning
Jakeš, Jan ; Beran, Vítězslav (referee) ; Zemčík, Pavel (advisor)
Multidimenzionální indexování je účinným nástrojem pro zachycení podobností mezi objekty bez nutnosti jejich explicitní kategorizace. V posledních letech byla tato metoda hojně využívána pro anotaci objektů a tvořila významnou část publikací spojených s projektem Visipedia. Tato práce analyzuje možnosti strojového učení z multidimenzionálně indexovaných obrázků na základě jejich obrazových příznaků a přestavuje metody predikce multidimenzionálních souřadnic pro předem neznámé obrázky. Práce studuje příslušené algoritmy pro extrakci příznaků, analyzuje relevantní metody strojového účení a popisuje celý proces vývoje takového systému. Výsledný systém je pak otestován na dvou různých datasetech a provedené experimenty prezentují první výsledky pro úlohu svého druhu.
Re-Identification of Vehicles in Video
Zapletal, Dominik ; Sochor, Jakub (referee) ; Herout, Adam (advisor)
This thesis deals with the vehicle re-identification in video problem. Vehicle re-identification is based on matching image parts obtained from different cameras. This work is focues on the re-identification itself assuming that the vehicle detection problem is already solved including extraction of a full-fledged 3D bounding box. The re-identification problem is solved by using color histograms, histograms of oriented gradients by a linear regressor. The features are used in separate models in order to get the best results in the shortest CPU computation time. The proposed method works with a high accuracy (60% true positives retrieved with 10% false positive rate on a challenging subset of the test data) in 85 milliseconds of the CPU (Core i7) computation time per one vehicle re-identification assuming the Full HD resolution video input. The applications of this work include finding important parameters like travel time, traffic flow, or traffic information in a distributed traffic surveillance and monitoring system.

National Repository of Grey Literature : 118 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.