National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Y1 and Y2 transposases, mechanisms of transposition, biological function.
Zahradník, Jiří ; Lichá, Irena (advisor) ; Schierová, Michaela (referee)
Transposases are enzymes that catalyse cleavage, transmission and re-inserting of mobile genetic element into the DNA. Tyrosine transposase take between these enzymes completely independend status. Their uniqueness is determined by their structure and different mechanism of the transposition reaction, in which the covalent phosphotyrosine intermediate plays major role. Mandatory presence of the catalytic tyrosine gives name to these enzymes and it enables their further classification into a group that carries only a single catalytic tyrosine - Y1 transposases and a group carrying two tyrosines - Y2 transposases. This thesis summarizes the current knowledge about tyrosine transposases. It covers their occurrence, structure, reaction mechanism and biological function. The reaction mechanism of the most studied Y1 transposase, associated with IS608 element, is described in detail. The work also focuses on other members of the tyrosin transposases family which carry the characteristic HUH motive. These include transposases associated with the insertion sequence of IS200/IS605 family (Y1), transposases associated with REP elements (so called RAYT proteins), transposases associated with IS91 family (Y2), transposases of ISCRs family (Y1) and unusual eukaryotic transposases of the Helitron family (Y2)....
Study of single stranded DNA by biophysical techniques
Svoboda, Jakub ; Schneider, Bohdan (advisor) ; Novák, Petr (referee)
DNA is the fundamental functional molecule of all domains of life. One of its characteristics is the ability to self-associate to form a double stranded helix. Nevertheless, even single stranded DNA can form non-canonical structures such as hairpins, triplexes or tetraplexes. One of the interesting single stranded sequences are REP elements. These sequences form a part of bacterial transposable elements, so-called insertion sequences, which can be found in a great number of copies in wide range of bacterial species. This thesis studies structure and properties of selected REP sequences. It presents the results of spectral measurements by technique of circular dichroism, melting curves from differential scanning calorimetry, and monocrystal diffraction data. Key words Single-stranded DNA, crystallography, circular dichroism, calorimetry, transpozone, REP elements, insertion sequences.
Y1 and Y2 transposases, mechanisms of transposition, biological function.
Zahradník, Jiří ; Lichá, Irena (advisor) ; Schierová, Michaela (referee)
Transposases are enzymes that catalyse cleavage, transmission and re-inserting of mobile genetic element into the DNA. Tyrosine transposase take between these enzymes completely independend status. Their uniqueness is determined by their structure and different mechanism of the transposition reaction, in which the covalent phosphotyrosine intermediate plays major role. Mandatory presence of the catalytic tyrosine gives name to these enzymes and it enables their further classification into a group that carries only a single catalytic tyrosine - Y1 transposases and a group carrying two tyrosines - Y2 transposases. This thesis summarizes the current knowledge about tyrosine transposases. It covers their occurrence, structure, reaction mechanism and biological function. The reaction mechanism of the most studied Y1 transposase, associated with IS608 element, is described in detail. The work also focuses on other members of the tyrosin transposases family which carry the characteristic HUH motive. These include transposases associated with the insertion sequence of IS200/IS605 family (Y1), transposases associated with REP elements (so called RAYT proteins), transposases associated with IS91 family (Y2), transposases of ISCRs family (Y1) and unusual eukaryotic transposases of the Helitron family (Y2)....

Interested in being notified about new results for this query?
Subscribe to the RSS feed.