National Repository of Grey Literature 4 records found  Search took 0.02 seconds. 
The role of DNA repair mechanisms in the pathogenesis of myelodysplastic syndrome.
Válka, Jan ; Čermák, Jaroslav (advisor) ; Pospíšilová, Dagmar (referee) ; Penka, Miroslav (referee)
Background: The high incidence of mutations and cytogenetic abnormalities in patients with myelodysplastic syndrome (MDS) suggests the involvement of DNA repair mechanism defects in the pathogenesis of this disorder. The first part of this work was focused on monitoring of gene expression of DNA repair genes in MDS patients and on their alterations during disease progression. In the second part, next generation sequencing was used to detect single nucleotide polymorphisms (SNPs) and mutations in DNA repair genes and their possible association with MDS development was evaluated. Methods: Expression profiling of 84 DNA repair genes was performed on bone marrow CD34+ cells of patients with MDS. Screening cohort consisted of 28 patients and expression of selected genes was further validated on larger cohort of 122 patients with all subtypes of MDS. Paired samples were used for monitoring of RAD51 and XRCC2 gene expression during disease progression. Immunohistochemical staining for RAD51 recombinase protein was done on samples acquired by trephine-biopsy. Targeted enrichment resequencing of exonic parts of 84 DNA repair genes was performed on the screening cohort of MDS patients. Real-time PCR was used for genotyping of selected SNPs in the population study. Results: RAD51 and XRCC2 genes showed...
The role of DNA repair mechanisms in the pathogenesis of myelodysplastic syndrome.
Válka, Jan ; Čermák, Jaroslav (advisor) ; Pospíšilová, Dagmar (referee) ; Penka, Miroslav (referee)
Background: The high incidence of mutations and cytogenetic abnormalities in patients with myelodysplastic syndrome (MDS) suggests the involvement of DNA repair mechanism defects in the pathogenesis of this disorder. The first part of this work was focused on monitoring of gene expression of DNA repair genes in MDS patients and on their alterations during disease progression. In the second part, next generation sequencing was used to detect single nucleotide polymorphisms (SNPs) and mutations in DNA repair genes and their possible association with MDS development was evaluated. Methods: Expression profiling of 84 DNA repair genes was performed on bone marrow CD34+ cells of patients with MDS. Screening cohort consisted of 28 patients and expression of selected genes was further validated on larger cohort of 122 patients with all subtypes of MDS. Paired samples were used for monitoring of RAD51 and XRCC2 gene expression during disease progression. Immunohistochemical staining for RAD51 recombinase protein was done on samples acquired by trephine-biopsy. Targeted enrichment resequencing of exonic parts of 84 DNA repair genes was performed on the screening cohort of MDS patients. Real-time PCR was used for genotyping of selected SNPs in the population study. Results: RAD51 and XRCC2 genes showed...
DNA damage response in mammalian oocytes
Vachová, Veronika ; Šolc, Petr (advisor) ; Nevoral, Jan (referee)
During early embryonic development oocytes are arrested in prophase I of the first meiotic division, in which they can persist for years. After reaching sexual maturity and the luteinizing hormon surge resumption of meiosis and meiotic maturation occur. Oocytes are arrested again at metaphase of the second meiotic division. At this stage they are ovulated and waiting for a fertilisation. Oocytes are during their development exposed to factors that cause DNA damage, of which DNA double-strand breaks (DSBs) are the most serious threat. The maintaining of genome integrity is crucial for quality of oocytes, fertility and proper embryonic development. The mechanism of the oocyte response to DSBs presence is not fully understood and it seems to differ from somatic cells. We assume that DSBs are repaired during meiotic maturation probably by a mechanism of homologous recombination (HR). In this thesis we focuse on essencial recombinase RAD51, which participates in the repair by HR. We found that RAD51 inhibition leads to an increase of segregation errors in anaphase I. Using high resolution live cell imaging we observed chromosomal fragments and anaphase bridges. Immunofluorescence detection of DSBs-marker γH2AX showed increased amount of DSBs in prophase I and MII stage after RAD51 inhibition. Our data...
Characterization of Antirecombinase Activity of Human FBH1 Helicase
Šimandlová, Jitka ; Janščák, Pavel (advisor) ; Cséfalvay, Eva (referee)
Homologous recombination (HR) is an essential mechanism for accurate repair of DNA double-strand breaks (DSBs). However, HR must be tightly controlled because excessive or unwanted HR events can lead to genome instability, which is a prerequisite for premature aging and cancer development. A critical step of HR is the loading of RAD51 molecules onto single-stranded DNA regions generated in the vicinity of the DSB, leading to the formation of a nucleoprotein filament. Several DNA helicases have been involved in the regulation of the HR process. One of these is human FBH1 (F-box DNA helicase 1) that is a member of SF1 superfamily of helicases. As a unique DNA helicase, FBH1 additionally possesses a conserved F-box motif that allows it to assemble into an SCF complex, an E3 ubiquitin ligase that targets proteins for degradation. FBH1 has been implicated in the restriction of nucleoprotein filament stability. However, the exact mechanism of how FBH1 controls the RAD51 action is still not certain. In this work, we revealed that FBH1 actively disassembles RAD51 nucleoprotein filament. We also show that FBH1 interacts with RAD51 and RPA physically in vitro. Based on these data, we propose a potential mechanism of FBH1 antirecombinase function.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.