National Repository of Grey Literature 13 records found  previous11 - 13  jump to record: Search took 0.01 seconds. 
European legal regulation of patents in the area of science and research
Hrdličková, Klára ; Scheu, Harald Christian (advisor) ; Svobodová, Magdaléna (referee)
European legal regulation of patents in the area of science and research Bioethics is an important part of law regulation in the medical field. According to the current state, bioethics is able to highlighted main issues, which are connected with medical research and suggest possible solution.This paper combines two controversial topics. First one is human embryonic stem cell research and second one is research on nanoparts and indicates Intelectual Property Law possibilities in this field. Paper is divided into two parts. First one deals with the legal regulation on research on embryo in the Czech Republic and in other states of The Western Europe. Main focus is based on patentability of research concerned with the human embryonic stem cells, which might have a great therapeutic potential but their preparation necessarily leads to the destruction of "human embryos". (HESC) Main concern is connected with regard to the European law and the current ground- breaking judgement, Brüstle v. Greenpeace eV. In mentioned judgment European Court of Justice held that after interpretation of the Directive on the legal protection of biotechnological inventions , it will not be able to grant a patent on research which led in the destruction of a human embryo. Paper also includes assessment of the attitude of the...
Study of expression of transferrin receptors (TfR1) and their utilization in nanomedicine
Krausová, Kateřina ; Fohlerová, Zdenka (referee) ; Heger,, Zbyněk (advisor)
Bachelor thesis deals with the expression of the transferrin receptor (TfR1) and its use in nanomedicine. During the last decade, nanotechnology emerged as one of the central milestones in connecting all scientific and technological disciplines. Nanomedicine already demonstrated efficacy not only in animal models of cancer but also in clinical practice. The theoretical part is not only aimed at cancer of the human population, but also at the possibilities of targeted drug delivery into the tumor tissue, which greatly reduces the otherwise serious side effects of conventional treatment – systemic toxicity. The practical part is focused on optimization for studying the expression of the transferrin receptor, a protein overexpressed by neoplastic cells aiming to enrich the higher metabolic needs of tumor cells. The optimal conditions were as follows: lysate of 50 000 cells applied with nonreducing nondenaturing buffer and the concentration of the primary antibody of 1.0 𝜇g/ml. Different levels of TfR1 expression were detected, depending on the type of tumor cells. The cell lines of neuroblastoma, prostate cancer (occurence in every 7th man) and breast cancer (occurence in every 8th woman) were selected for the next experiments. Via this transferrin receptor, apoferritin, which is a protein storaging iron ions in many organisms, can be internalized into cells. Artificially, the internal cavity of apoferritin may be used for encapsulation and transport of any molecules. In the case of this bachelor thesis, the apoferritin was used for delivery of doxorubicin. Doxorubicin has been used for cancer treatment for more than 30 years; however, its administered dose is limited by its high toxicity. This can be reduced by its encapsulation in a suitable vector for targeted transport to the tumor cells only. Apoferritin could serve as such suitable vector. In this thesis, the suitable usage of apoferritin as a nanocarrier for chemotherapeutic delivery was confirmed. Its molecule size of 10-12 nm allows it to employ the effect of increased permeability and retention. At the same time, this size makes it possible to avoid renal clearance. The properties of encapsulated doxorubicin are not affected by apoferritin, thus preserving its toxicity for cells with a high level of TfR1 expression (30% growth inhibition of these cells after 24 h of treatment).
Nanotransporters for theranostics
Dostálová, Simona ; Adam,, Vojtěch (referee) ; Kizek, René (advisor)
Master thesis deals with the use of bacteriophage as a theranostic drug nanocarrier. The term theranostics is used in recent years for systems that allow connecting of diagnostics, targeted drug delivery and monitoring of patient’s response to administered treatment in a single modality. These systems are very suitable especially with heterogeneous diseases, such as cancer. Nowadays, the treatment of cancer has often severe side effects to the patient’s body, which lowers his capability to fight the disease. Theoretical part of this work is focused on the properties of viral capsids, proteins and inorganic materials as drug nanocarriers. In practical part of this work, different methods for cultivation of bacteriophage are compared, both in liquid and solid medium and with different concentrations of the maltose, trough whose receptors bacteriophage is able to enter the host cell. Optimal was cultivation with 0.2% maltose in solid medium. Practical part is focused mainly on the use of bacteriophage as a nanocarrier for cytotoxic drug doxorubicin. Bacteriophage was able to encapsulate all applied concentrations of doxorubicin (0; 12.5; 25; 50; 100 and 200 g/ml), which was proved using fluorescent detection. Different times of encapsulation (2; 4; 8 and 12 hours) were studied. Optimal time was 2 hours. Encapsulation properties of bacteriophage were compared to apoferritin. Bacteriophage was able to encapsulate 4× higher concentrations of doxorubicin and its release during rinsing with water was 10× lower compared to apoferritin. This work concludes that bacteriophage is a very suitable platform for targeted drug delivery in theranostics.

National Repository of Grey Literature : 13 records found   previous11 - 13  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.