National Repository of Grey Literature 133 records found  previous11 - 20nextend  jump to record: Search took 0.00 seconds. 
Preparation and characterization of novel application forms of humic substances in combination with water sorbents
Nováčková, Táňa ; Pekař, Miloslav (referee) ; Sedláček, Petr (advisor)
This bachelor’s thesis discusses an applicability of hydrogel forms-based composite materials of humic acids and commercial water sorbent. According to the literature review, methods of incorporation of humic acids into commercial sorbents of water under various conditions and the resulting materials were subsequently characterized. In the characterization, major attention was paid to the determination of the water content and the swelling characteristics. Preparation of the composite materials was directed to use their sorption abilities and ability to control the release of humic substances in agriculture.
The utilization of atomic force microscopy for study on hydrogels
Lišková, Kateřina ; Kalina, Michal (referee) ; Smilek, Jiří (advisor)
The presented bachelor thesis deals with the study of atomic force microscopy (AFM), especially the optimization of the measuring procedure for imaging the surface of variously crosslinked hydrogels in the hydrated state. The most attention was given to the physically crosslinked polysaccharide hydrogel (termoreversible agarose) in hydrated state, where the surface of the samples with mass concentration of 4, 2, 1, 0,75 and 0,5 % was measured. Subsequently, the surface of the ionically crosslinked 2 % alginate gel with calcium ions was measured. Based on a literature research, measurements were performed in water using the method of quantitative imaging (QITM Advanced Imaging), which is especially suitable for soft samples with uneven surfaces. Multiple cantilever were tested for measurement, finally the SNL-10 cantilever was selected, which showed versatility for imaging samples in any measuring environment, especially aqueous. The pore sizes of the agarose hydrogels were monitored by image analysis ImageJ. For the measurement of hydrogels in the swollen state, the procedure of measuring their surface using atomic force microscopy has been optimized, but for different types of hydrogels, individual optimization of both preparation and instrument setup will be required.
Transport processes in hydrogels
Sárová, Michaela ; Kalina, Michal (referee) ; Klučáková, Martina (advisor)
This master's thesis is focused on study of transport processes in hydrogels based on humic acids. For this purpose is used methods unsteady diffusion in cuvettes, which was studied the transport of organic dyes, specifically methylene blue and rhodamine 6G, in agarose hydrogel without the addition and with the addition of individual standards humic acids (Leonardite, Elliott Soil, Suwannee River II and Pahokee Peat). This method is based on spectrophotometric monitoring of concentration changes of dyes depending on space of the cuvette and on time. The aim of this thesis was to investigate the effects of interactions between diffusing dye and the particular type of gel to the resultant effective diffusion coefficient of dye. The experiments indicate that the presence of humic acid in the hydrogel greatly affects the transport of selected dyes.
Optimalization of techniques of microrheology for characterization of biopolymer hydrogels
Dušenková, Alica ; Smilek, Jiří (referee) ; Sedláček, Petr (advisor)
The main aim of the bachelor thesis is optimalization of microrheological techniques for characterization of biopolymer hydrogels. Hydrogels, based on thermoreversible biopolymer agarose, were selected for these experiments. The influence of incorporated poly(sodium 4-styrenesulfonate) on structure and viscoelastic properties of agarose hydrogels was investigated through diffusion coefficient and MSD curves. Microrheological properties were studied by fluorescence correlation spectroscopy, by using fluorescent beads, which were embedded in hydrogel systems.
Preparation of humic hydrogels for appliaction in cosmetics
Pavlicová, Renata ; Mravec, Filip (referee) ; Sedláček, Petr (advisor)
This bachelor´s thesis is focused on the preparation and characterization of hydrogels containing humic substances and assessment of their potential usefulness in cosmetic practice. Main objective of the work was to develop a literature review focusing on the potential use of humic substances in the cosmetics and pharmaceutical industries. Furthermore, the aim was to prepare model hydrogels addition of soluble humic substances in traditional cosmetic compositions and their characterization by basic methods of analysis parameters. The main investigated parameters were consistency resulting gels (assessed subjectively and subsequently by rheology), their internal pH and dry matter. The experimental results showed that incorporation of humic substances into hydrogels resulting gels acceptable characteristics for further use in cosmetic applications.
Study of degradation of biocompatible copolymers
Oborná, Jana ; Čáslavský, Josef (referee) ; Vávrová, Milada (advisor)
This diploma thesis is focused on biocompatible polymers degradation study. Copolymers were studied based on poly(lactic-co-glycolic) acid and poly(ethylene glycol) PLGA-PEG-PLGA and further these copolymers modified with itaconic acid ITA-PLGA-PEG-PLGA-ITA. This paper investigated the influence of pH phosphate solution on the degradation of polymers. Degradation of polymers occurred at 37 °C in phosphate solution with pH 4.2, 7.4 and 9.2. High performance liquid chromatography with UV-VIS detection of diode-array type was used for quantitative determination of lactic acid and glycolic acid as the final degradation products. For qualitative identification of additional degradation products were used tandem connection liquid chromatography and mass spectrometry. Gel permeation chromatography with refractive index detector was used to determine the molecular weight decrease polymer chain after the degradation.
Study on Sol-gel Process of Agarose by Classical Rheology and Dynamic Light Scattering
Krňávková, Šárka ; Hnyluchová, Zuzana (referee) ; Smilek, Jiří (advisor)
The main aim of the bachelor thesis was characterization of hydrogels from rheological point of view and by dynamic light scattering. Rheological part of research relates with the determination of the influence of temperature on mechanical properties, gelation temperature and temperature of solidification as well as the effect of aging on mechanical properties of hydrogel. The influence of the particle size on diffusion coefficient was investigated by scattering techniques. The positive correlation between the data obtained by both types of measurement and the potencial usage of dynamic light scattering method for the characterization of hydrogels was discussed as well.
Viscoelastic properties of hydrogels depending on relative humidity
Kouřilová, Ludmila ; Heger, Richard (referee) ; Smilek, Jiří (advisor)
This bachelor thesis is mainly aimed on the determination of the dependence of the viscoelastic properties of physically crosslinked hydrogels on the relative humidity controlled by humidity cell (as an accessory to a rotary rheometer), or the desiccator with the drying medium. The main objective was to optimise the methodology of the humidity cell for the rheological determination of the viscoelastic properties of hydrogel materials as a function of relative humidity and to verify experimental setup on the agarose hydrogel. The results showed that the agarose hydrogel gradually loses its dispersion medium after exposure to chosen relative humidity, resulting in a loss of contact between the upper rheometer sensor and the sample when measured with the standard measurement gap control setting, which is constant during the measurement. The setting of the control of normal force proved to be an appropriate solution, which has led to a gradual reduction in the height of the upper rheometer sensor in an attempt to keep the normal force at the desired level during the drying of the hydrogel. A humidity cell proves to be an appropriate method for determining the dependence of the viscoelastic properties of hydrogels on relative humidity. Unlike the use of a desiccator with drying medium, the drying of the hydrogel sample does not result in such rapid drying that it breaks the texture on its surface. Another advantage of a humidity cell is the ability to maintain the desired relative humidity value even if the gel begins to release dispersion medium into its surroundings, which was not possible with a desiccator with drying medium.
Hydrogels of Humic Acids - Experimental Model and Application Form
Sedláček, Petr ; Klučáková, Martina (advisor)
The thesis deals with a utilization of hydrogels made of humic acids in both basic and applied research of this valuable natural material. The attention is paid to an interaction between the humic gel and cupric ions as the model heavy metal. The main experimental part focuses on an optimation of simple laboratory diffusion methods which serve as an innovative tool for modeling pollutants’ transport in natural humic environments. Various techniques were used in order to determine a diffusion coefficient of cupric ions in humic gel; the value is closely linked with the studied interaction between solid content of the gel and the diffusing species. Consequently, the diffusivity can be used as a standard parameter for basic reactivity mapping studies concerning humic substances. The final chapter of the thesis deals with a preparation of mixed reversible hydrogels formed by a reaction between humic acids and chitosan. These materials represent a suitable colloidal form for humic acids’ industrial and agricultural applications.
Study on Interconnection between Structure and Rheological Properties of Hydrogels on Macro and Microscopic Level
Lepíková, Jana ; Klučáková, Martina (referee) ; Kalina, Michal (advisor)
Diploma thesis main goal is to obtain new pieces of knowledge about relationship between hydrogel structures and its flow and transport properties. Thesis is mainly focusing on combining pertinent biopolymers into model hydrogels based on agarose. Then perform correlation of results obtained by diffusion methods, and by rheologic measurements on macroscopic and microscopic level. Properties of hydrogels were measured by selected rheologic measurements, dynamic light scattering method, and correlative fluorescence spectroscopy. From these methods various parameters (MSD modules, values of complex viscosity) were obtained. Afterwards transport properties of prepared hydrogels were studied by observing Rhodamine 6G diffusion. Here two different approaches were used. From macroscopic perspective, simple principles of mass diffusion from dye solution to cuvettes filled with hydrogels containing individual biopolymers were used. From microscopic perspective, dye was added during the sample preparation and then the mass diffusion was investigated using FCS. Based on evaluated results it was discovered that added biopolymers don’t influence properties of carrier medium, in this case agarose hydrogels. During the study of prepared hydrogels’ reactivity and barrier properties some differences were observed. Charge of biopolymer and its charge density were discovered as main factors influencing transport of charged solutes into prepared hydrogels.

National Repository of Grey Literature : 133 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.