National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Simulation of fluid flow around obstacles by Lattice Boltzmann Method
Prinz, František ; Pokorný, Jan (referee) ; Zatočilová, Jitka (advisor)
The task of this diploma thesis is the Lattice Boltzmann method (LBM). LBM is a mesoscopic method describing the particle motion in a fluid by the Boltzmann equation, where the distribution function is involved. The Chapman-Enskog expansion shows the connection with the macroscopic Navier-Stokes equations of conservation laws. In this process the Hermite polynoms are used. The Lattice Boltzmann equation is derived by the discretisation of velocity, space and time which is concluding to the numerical algorithm. This algorithm is applied at two problems of fluid flow: the two-dimensional square cavity and a flow arround obstacles. In both cases were the results of velocities compared to results calculated by finite volume method (FVM). The relative errors are in order of multiple 1 %.
Computational Modelling of Mechanical Behaviour of "Elastomer-Steel Fibre" Composite
Lasota, Tomáš ; Okrouhlík,, Miloslav (referee) ; Nováček,, Vít (referee) ; Burša, Jiří (advisor)
Tato práce se zabývá výpočtovými simulacemi zkoušek jednoosým tahem a tříbodovým ohybem kompozitního vzorku složeného z elastomerové matrice a ocelových výztužných vláken orientovaných pod různými úhly, jakož i jejich experimentální verifikací. Simulace byly provedeny pomocí dvou různých modelů - bimateriálového a unimateriálového výpočtového modelu. Při použití bimateriálového modelu, který detailně zohledňuje strukturu kompozitu, tzn. pracuje s matricí a jednotlivými vlákny, je zapotřebí vytvořit model každého vlákna obsaženého v kompozitu, což přináší řadu nevýhod (pracná tvorba výpočtového modelu, řádově větší množství elementů potřebných k diskretizaci v MKP systémech a delší výpočetní časy). Na druhé straně v unimateriálovém modelu se nerozlišují jednotlivá vlákna, pracuje se pouze s kompozitem jako celkem tvořeným homogenním materiálem a výztužný účinek vláken je zahrnut v měrné deformační energii. Porovnání experimentů se simulacemi ukázalo, že bimateriálový model je v dobré shodě s experimenty, na rozdíl od unimateriálového modelu, který je schopen poskytnou odpovídající výsledky pouze v případě tahového namáhání. Z tohoto důvodu byl hledán způsob, který by umožnil rozšířit unimateriálový model o ohybovou tuhost výztužných vláken. V roce 2007 Spencer a Soldatos publikovali rozšířený unimateriálový model, který je schopen pracovat nejen s tahovou, ale i ohybovou tuhostí vlákna. Představený obecný model je však založen na Cosseratově teorii kontinua a jeho praktické využití je pro jeho složitost nemožné. Proto byl vytvořen zjednodušený model (částečně podle Spencera a Soldatose) s vlastní navrženou formou měrné deformační energie. Za účelem ověření nového unimateriálového modelu s ohybovou tuhostí vláken byly odvozeny všechny potřebné rovnice a byl napsán vlastní konečno-prvkový řešič. Tento řešič je založen na Cosseratově teorii kontinua a obsahuje zmíněný anizotropní hyperelastický unimateriálový model zahrnující ohybovou tuhost vláken. Vzhledem k tomu, že v případě Cosseratovy teorie jsou při výpočtu potřebné i druhé derivace posuvů, bylo nutné použít tzv. C1 prvky, které mají spojité jak pole posuvů, tak jejich prvních derivací. Nakonec byly provedeny nové simulace s využitím vlastního řešiče, které ukazují, že tuhost vláken lze u nového unimateriálového modelu řídit odpovídající materiálovou konstantou. V závěru práce je pak diskutováno, zda je nový unimateriálový model s ohybovou tuhostí schopen poskytnout stejné výsledky jako model bimateriálový, a to jak při tahovém tak i ohybovém namáhání kompozitního vzorku.
Simulation of fluid flow around obstacles by Lattice Boltzmann Method
Prinz, František ; Pokorný, Jan (referee) ; Zatočilová, Jitka (advisor)
The task of this diploma thesis is the Lattice Boltzmann method (LBM). LBM is a mesoscopic method describing the particle motion in a fluid by the Boltzmann equation, where the distribution function is involved. The Chapman-Enskog expansion shows the connection with the macroscopic Navier-Stokes equations of conservation laws. In this process the Hermite polynoms are used. The Lattice Boltzmann equation is derived by the discretisation of velocity, space and time which is concluding to the numerical algorithm. This algorithm is applied at two problems of fluid flow: the two-dimensional square cavity and a flow arround obstacles. In both cases were the results of velocities compared to results calculated by finite volume method (FVM). The relative errors are in order of multiple 1 %.
Computational Modelling of Mechanical Behaviour of "Elastomer-Steel Fibre" Composite
Lasota, Tomáš ; Okrouhlík,, Miloslav (referee) ; Nováček,, Vít (referee) ; Burša, Jiří (advisor)
Tato práce se zabývá výpočtovými simulacemi zkoušek jednoosým tahem a tříbodovým ohybem kompozitního vzorku složeného z elastomerové matrice a ocelových výztužných vláken orientovaných pod různými úhly, jakož i jejich experimentální verifikací. Simulace byly provedeny pomocí dvou různých modelů - bimateriálového a unimateriálového výpočtového modelu. Při použití bimateriálového modelu, který detailně zohledňuje strukturu kompozitu, tzn. pracuje s matricí a jednotlivými vlákny, je zapotřebí vytvořit model každého vlákna obsaženého v kompozitu, což přináší řadu nevýhod (pracná tvorba výpočtového modelu, řádově větší množství elementů potřebných k diskretizaci v MKP systémech a delší výpočetní časy). Na druhé straně v unimateriálovém modelu se nerozlišují jednotlivá vlákna, pracuje se pouze s kompozitem jako celkem tvořeným homogenním materiálem a výztužný účinek vláken je zahrnut v měrné deformační energii. Porovnání experimentů se simulacemi ukázalo, že bimateriálový model je v dobré shodě s experimenty, na rozdíl od unimateriálového modelu, který je schopen poskytnou odpovídající výsledky pouze v případě tahového namáhání. Z tohoto důvodu byl hledán způsob, který by umožnil rozšířit unimateriálový model o ohybovou tuhost výztužných vláken. V roce 2007 Spencer a Soldatos publikovali rozšířený unimateriálový model, který je schopen pracovat nejen s tahovou, ale i ohybovou tuhostí vlákna. Představený obecný model je však založen na Cosseratově teorii kontinua a jeho praktické využití je pro jeho složitost nemožné. Proto byl vytvořen zjednodušený model (částečně podle Spencera a Soldatose) s vlastní navrženou formou měrné deformační energie. Za účelem ověření nového unimateriálového modelu s ohybovou tuhostí vláken byly odvozeny všechny potřebné rovnice a byl napsán vlastní konečno-prvkový řešič. Tento řešič je založen na Cosseratově teorii kontinua a obsahuje zmíněný anizotropní hyperelastický unimateriálový model zahrnující ohybovou tuhost vláken. Vzhledem k tomu, že v případě Cosseratovy teorie jsou při výpočtu potřebné i druhé derivace posuvů, bylo nutné použít tzv. C1 prvky, které mají spojité jak pole posuvů, tak jejich prvních derivací. Nakonec byly provedeny nové simulace s využitím vlastního řešiče, které ukazují, že tuhost vláken lze u nového unimateriálového modelu řídit odpovídající materiálovou konstantou. V závěru práce je pak diskutováno, zda je nový unimateriálový model s ohybovou tuhostí schopen poskytnout stejné výsledky jako model bimateriálový, a to jak při tahovém tak i ohybovém namáhání kompozitního vzorku.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.