National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Experimental biomechanical hand prosthesis
Lux, Martin ; Rosický, Jiří (referee) ; Paloušek, David (advisor)
This masters thesis deals with experimental biomechanical hand prosthesis designing and its realization in shape of prototype. Hand prosthesis sizing corresponds with adult man hand. Prosthesis functionality is selected with respect to search analysis results, to provide sufficient options to grip different objects. Hand design, including technical documentation, is completely made in Autodesk Inventor 2012. Main parts of prototype are made with using rapid - prototyping technologies. Used materials for parts made by this way are ABS plastics and plaster powder. Firgelli linear actuators (product line L) are used as drive for electrical controlled fingers. Prototype control is realized by PCI card and program, which has been written in LabView.
Myoelectric prosthetic device of human arm
Lutz, Jan ; Kozumplík, Jiří (referee) ; Kuna, Zdeněk (advisor)
This project treats of using electromyograph as a control standard for prosthetic replacement of human arm. The work is mainly focused on surface signals. Reader is briefed by creation and transmission of the signal. The work takes account of the transmission of the signal for surface electrodes and the differences between the ideal and the real connection. Another point of the thesis is the design of basic system model for simulation of the robotic arm movement, which depends on the measured signal. In the practical part there is the realization of the artificial limb movement. It starts with the roboric arm construction and continues with the communication between computer and the robotic arm. First part of practical testing ends with creating of an user interface, which is capable of control all robotic arm movements. The interface is combined with a computer model in Matlab robotic toolbox. The model is able to move in sync with the real robot. The final part is devoted to practical measurement with Biopac instruments. The obtained signal is modified to be used as controller for the robotic arm. Author's aim is to adjust this movement to be most similar to real movement.
Mechanical upper limb prosthesis
Koukal, Ondřej ; Čížek, Petr (referee) ; Paloušek, David (advisor)
This thesis elaborates on design and fabrication of an artificial mechanical upper limb prototype for transradial amputations, i. e. for patients with stump between elbow and wrist joints. The artificial limb is designed for use in a wide spectrum of patients. Therefore, the main components are designed to be applicable to smaller as well as larger hand dimensions. The artificial mechanical limb is designed to be controlled by the other hand of a patient and enables grasping of objects via cylindrical and hook grip. Fingers are driven by tension springs and can be locked in extension. Clenching can be initiated by pressing a button, which unlocks the fingers, thus an object can be grasped. Wrist joint is adjustable when pressed a release button. Forearm joint is locked by preloaded spring. The lock of the forearm joint is released by sufficient torque. New position of the forearm joint is locked automatically when the torque is not being applied. Prototypes of the artificial mechanical upper limb were manufactured by using of rapid prototyping technologies (FDM, SLM) as well as CNC milling machine. All parts of the artificial limb were designed with regard to manufacturability by conventional methods such as casting, injection and the like. The artificial limb prototype had been designed on 3D data basis of a specific patient, who already has tested the prototype. Following materials were used on the prototype: ABS plastic, SikaBlock M940 polyurethane, aluminium and 316L stainless steel.
Mechanical upper limb prosthesis
Koukal, Ondřej ; Čížek, Petr (referee) ; Paloušek, David (advisor)
This thesis elaborates on design and fabrication of an artificial mechanical upper limb prototype for transradial amputations, i. e. for patients with stump between elbow and wrist joints. The artificial limb is designed for use in a wide spectrum of patients. Therefore, the main components are designed to be applicable to smaller as well as larger hand dimensions. The artificial mechanical limb is designed to be controlled by the other hand of a patient and enables grasping of objects via cylindrical and hook grip. Fingers are driven by tension springs and can be locked in extension. Clenching can be initiated by pressing a button, which unlocks the fingers, thus an object can be grasped. Wrist joint is adjustable when pressed a release button. Forearm joint is locked by preloaded spring. The lock of the forearm joint is released by sufficient torque. New position of the forearm joint is locked automatically when the torque is not being applied. Prototypes of the artificial mechanical upper limb were manufactured by using of rapid prototyping technologies (FDM, SLM) as well as CNC milling machine. All parts of the artificial limb were designed with regard to manufacturability by conventional methods such as casting, injection and the like. The artificial limb prototype had been designed on 3D data basis of a specific patient, who already has tested the prototype. Following materials were used on the prototype: ABS plastic, SikaBlock M940 polyurethane, aluminium and 316L stainless steel.
Experimental biomechanical hand prosthesis
Lux, Martin ; Rosický, Jiří (referee) ; Paloušek, David (advisor)
This masters thesis deals with experimental biomechanical hand prosthesis designing and its realization in shape of prototype. Hand prosthesis sizing corresponds with adult man hand. Prosthesis functionality is selected with respect to search analysis results, to provide sufficient options to grip different objects. Hand design, including technical documentation, is completely made in Autodesk Inventor 2012. Main parts of prototype are made with using rapid - prototyping technologies. Used materials for parts made by this way are ABS plastics and plaster powder. Firgelli linear actuators (product line L) are used as drive for electrical controlled fingers. Prototype control is realized by PCI card and program, which has been written in LabView.
Myoelectric prosthetic device of human arm
Lutz, Jan ; Kozumplík, Jiří (referee) ; Kuna, Zdeněk (advisor)
This project treats of using electromyograph as a control standard for prosthetic replacement of human arm. The work is mainly focused on surface signals. Reader is briefed by creation and transmission of the signal. The work takes account of the transmission of the signal for surface electrodes and the differences between the ideal and the real connection. Another point of the thesis is the design of basic system model for simulation of the robotic arm movement, which depends on the measured signal. In the practical part there is the realization of the artificial limb movement. It starts with the roboric arm construction and continues with the communication between computer and the robotic arm. First part of practical testing ends with creating of an user interface, which is capable of control all robotic arm movements. The interface is combined with a computer model in Matlab robotic toolbox. The model is able to move in sync with the real robot. The final part is devoted to practical measurement with Biopac instruments. The obtained signal is modified to be used as controller for the robotic arm. Author's aim is to adjust this movement to be most similar to real movement.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.