National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Tumor microenvironment modulation and the impact on cancer immunotherapy
Musil, Jan
Modulation of the tumor microenvironment represents a possible way to inhibit cancer growth and enhance anti-cancer immune responses. In the presented work we employ two strategies for tumor microenvironment modulation. Firstly, we have constructed rVACV co-expressing the tumor suppressor gene insulin-like growth factor-binding protein-3 (IGFBP- 3) and the fusion gene encoding the immunogen SigE7LAMP. The expression of IGFBP-3 was regulated either by the early vaccinia virus H5 promoter or by the synthetic early/late (E/L) promoter. We have shown that expression of IGFBP-3 regulated by the H5 promoter yielded higher amounts of IGFBP-3 protein when compared with the E/L promoter. Immunization with P13-SigE7LAMP-H5-IGFBP-3 was more effective in inhibiting the growth of TC-1 tumors in mice and elicited a higher T-cell response against VACV-encoded antigens than the control virus P13-SigE7LAMP-TK- . We found that high-level production of IGFBP-3 enhanced virus replication both in vitro and in vivo, resulting in profound antigen stimulation. Production of IGFBP-3 was associated with a higher adsorption rate of P13-SigE7LAMP-H5-IGFBP-3 to CV-1 cells when compared with P13-SigE7LAMP-TK- . We have identified two structural differences between the IMVs of the IGFBP-3 expressing virus P13-SigE7LAMP-H5-IGFBP-3...
Tumor microenvironment modulation and the impact on cancer immunotherapy
Musil, Jan
Modulation of the tumor microenvironment represents a possible way to inhibit cancer growth and enhance anti-cancer immune responses. In the presented work we employ two strategies for tumor microenvironment modulation. Firstly, we have constructed rVACV co-expressing the tumor suppressor gene insulin-like growth factor-binding protein-3 (IGFBP- 3) and the fusion gene encoding the immunogen SigE7LAMP. The expression of IGFBP-3 was regulated either by the early vaccinia virus H5 promoter or by the synthetic early/late (E/L) promoter. We have shown that expression of IGFBP-3 regulated by the H5 promoter yielded higher amounts of IGFBP-3 protein when compared with the E/L promoter. Immunization with P13-SigE7LAMP-H5-IGFBP-3 was more effective in inhibiting the growth of TC-1 tumors in mice and elicited a higher T-cell response against VACV-encoded antigens than the control virus P13-SigE7LAMP-TK- . We found that high-level production of IGFBP-3 enhanced virus replication both in vitro and in vivo, resulting in profound antigen stimulation. Production of IGFBP-3 was associated with a higher adsorption rate of P13-SigE7LAMP-H5-IGFBP-3 to CV-1 cells when compared with P13-SigE7LAMP-TK- . We have identified two structural differences between the IMVs of the IGFBP-3 expressing virus P13-SigE7LAMP-H5-IGFBP-3...
Tumor microenvironment modulation and the impact on cancer immunotherapy
Musil, Jan ; Němečková, Šárka (advisor) ; Mikyšková, Romana (referee) ; Otáhal, Pavel (referee)
Modulation of the tumor microenvironment represents a possible way to inhibit cancer growth and enhance anti-cancer immune responses. In the presented work we employ two strategies for tumor microenvironment modulation. Firstly, we have constructed rVACV co-expressing the tumor suppressor gene insulin-like growth factor-binding protein-3 (IGFBP- 3) and the fusion gene encoding the immunogen SigE7LAMP. The expression of IGFBP-3 was regulated either by the early vaccinia virus H5 promoter or by the synthetic early/late (E/L) promoter. We have shown that expression of IGFBP-3 regulated by the H5 promoter yielded higher amounts of IGFBP-3 protein when compared with the E/L promoter. Immunization with P13-SigE7LAMP-H5-IGFBP-3 was more effective in inhibiting the growth of TC-1 tumors in mice and elicited a higher T-cell response against VACV-encoded antigens than the control virus P13-SigE7LAMP-TK- . We found that high-level production of IGFBP-3 enhanced virus replication both in vitro and in vivo, resulting in profound antigen stimulation. Production of IGFBP-3 was associated with a higher adsorption rate of P13-SigE7LAMP-H5-IGFBP-3 to CV-1 cells when compared with P13-SigE7LAMP-TK- . We have identified two structural differences between the IMVs of the IGFBP-3 expressing virus P13-SigE7LAMP-H5-IGFBP-3...
IGFBP3 expressing rekombinant vaccinia virus used for tumor therapy
Musil, Jan ; Němečková, Šárka (advisor) ; Forstová, Jitka (referee)
IGFBP-3 expressing rekombinant vaccinia viruses used for tumor therapy Insulin-like growth factor-binding protein-3 (IGFBP-3) is a major regulator of endocrine effects of IGF and is capable to suppress the growth of variety of cancer. Several studies have shown that IGFBP-3 can induce the apoptosis of cancer cells via IGF-dependent and IGF-independent mechanisms. In our study, we have constructed recombinant vaccinia viruses (VACV) expressing IGFBP-3 under the control of the early H5 and synthetic early/late (E/L) promoter to investigate the potential effect on cancer growth in our cervical cancer model. We have shown that the expression of IGFBP-3 alone had no effect on tumor growth. On the other hand, the co-expression of IGFBP-3 enhanced the anti-cancer effect of immunization with the fusion protein SigE7LAMP, which gave rise to the anti-cancer immunity directed against HPV16 induced tumors. We have shown that the double-recombinant P13-SigE7LAMP-H5-IGFBP-3 can enhance the protective immune responses against MK16/ABC induced tumors. Furthermore, we have show that both double-recombinant viruses P13-SigE7LAMP-H5- IGFBP-3 and P13-SigE7LAMP-E/L-IGFBP-3 can increase the anti-cancer effect of SigE7LAMP expression in the therapy of TC-1 induced tumors. Key words: IGFBP-3, IGF, VACV, HPV16, E7 oncoprotein,...
Enhancement of the efficacy of DNA vaccines against the cervical cancer with helper epitopes
Peřinová, Lucie ; Brábek, Jan (referee) ; Šmahel, Michal (advisor)
The human papillomaviruses (HPV) are the etiological agent of cervical cancer. Their oncoproteins E6 and E7 are involved in the transformation of an infected cell into a neoplastic cell, thereby they are the target antigenes for the development of DNA vaccines. Helper epitopes activating CD4+ T cells are under study because they enhance the efficacy of DNA vaccines through increasing the number of cytotoxic T lymphocytes and thereby removal of the tumor. There are already being used epitopes derived directly from oncoproteins, synthetic epitopes or bacterial epitopes for the general enhancement of the immune response. Sufficient number of comparative studies which would establish the exactly most efficient helper epitopes has not been made. The research aims at combining more peptide types using immunostimulatory molecules.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.