National Repository of Grey Literature 13 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Distributed mathematical calculation on the PC
Fuksa, Tomáš ; Macho, Tomáš (referee) ; Petyovský, Petr (advisor)
This bachelor's thesis deals with the usage of graphics cards for mathematical calculations. The selection of the suitable SDK and implementation of several examples of calculations on the cards.
Paralelized image processing library
Fuksa, Tomáš ; Macho, Tomáš (referee) ; Petyovský, Petr (advisor)
This work deals with parallel computing on modern processors - multi-core CPU and GPU. The goal is to learn about computing on this devices suitable for parallelization, define their advantages and disadvantages, test their properties in examples and select appropriate tools to implement a library for parallel image processing. This library is going to be used for the vanishing point estimation in the path finding mobile robot.
Object Detection on GPU
Macenauer, Pavel ; Polok, Lukáš (referee) ; Juránek, Roman (advisor)
This thesis addresses the topic of object detection on graphics processing units. As a part of it, a system for object detection using NVIDIA CUDA was designed and implemented, allowing for realtime video object detection and bulk processing. Its contribution is mainly to study the options of NVIDIA CUDA technology and current graphics processing units for object detection acceleration. Also parallel algorithms for object detection are discussed and suggested.
The algorithms of digital image processing on graphics cards
Bielczyk, Marek ; Lattenberg, Ivo (referee) ; Přinosil, Jiří (advisor)
Purpose of this work is show possibility of using grapichs cart for imaging a video signal. This work is particularly focused on technology CUDA and OpenCL. The solution is first focused on graphics cart and show how has been changed components and how has been changed performaces of graphics cart. Then show CUDA and OpenCL technology itself, and show samples of codes with explain, what which code do. Output of this work is some programs, witch defined for both technology and for both procesors unit. Contribution of this work is show differents between procesors unit, witch can be used to right choose for design your own algorithm.
Vertex and Pixel Shaders OpenGL Visualisation of Medical 3D Image Data
Vaďura, Jiří ; Španěl, Michal (referee) ; Kršek, Přemysl (advisor)
This thesis deals with accelerated 3D rendering of medical data, e.g. computed tomography, using a graphics processor and OpenGL library. Raw data slices are send to graphic memory and rendered by a ray-casting algorithm. The goal of this project is high quality visual output and full user interaction at the same time. Multiple rendering modes are avaiable to the user: MIP, X-Ray simulation and realistic shading.
GPU Accelerated Adversarial Search
Brehovský, Martin ; Bošanský, Branislav (advisor) ; Bída, Michal (referee)
General purpose graphical processing units were proven to be useful for accelerating computationally intensive algorithms. Their capability to perform massive parallel computing significantly improve performance of many algorithms. This thesis focuses on using graphical processors (GPUs) to accelerate algorithms based on adversarial search. We investigate whether or not the adversarial algorithms are suitable for single instruction multiple data (SIMD) type of parallelism, which GPU provides. Therefore, parallel versions of selected algorithms accelerated by GPU were implemented and compared with the algorithms running on CPU. Obtained results show significant speed improvement and proof the applicability of GPU technology in the domain of adversarial search algorithms.
Implementing incomplete inverse decomposition on graphical processing units
Dědeček, Jan ; Tůma, Miroslav (advisor) ; Hakl, František (referee)
The goal of this Thesis was to evaluate a possibility to solve systems of linear algebraic equations with the help of graphical processing units (GPUs). While such solvers for generally dense systems seem to be more or less a part of standard production libraries, the Thesis concentrates on this low-level parallelization of equations with a sparse system that still presents a challenge. In particular, the Thesis considers a specific algorithm of an approximate inverse decomposition of symmetric and positive definite systems combined with the conjugate gradient method. An important part of this work is an innovative parallel implementation. The presented experimental results for systems of various sizes and sparsity structures point out that the approach is rather promising and should be further developed. Summarizing our results, efficient preconditioning of sparse systems by approximate inverses on GPUs seems to be worth of consideration. Powered by TCPDF (www.tcpdf.org)
GPU Accelerated Adversarial Search
Brehovský, Martin ; Bošanský, Branislav (advisor) ; Bída, Michal (referee)
General purpose graphical processing units were proven to be useful for accelerating computationally intensive algorithms. Their capability to perform massive parallel computing significantly improve performance of many algorithms. This thesis focuses on using graphical processors (GPUs) to accelerate algorithms based on adversarial search. We investigate whether or not the adversarial algorithms are suitable for single instruction multiple data (SIMD) type of parallelism, which GPU provides. Therefore, parallel versions of selected algorithms accelerated by GPU were implemented and compared with the algorithms running on CPU. Obtained results show significant speed improvement and proof the applicability of GPU technology in the domain of adversarial search algorithms.
The algorithms of digital image processing on graphics cards
Bielczyk, Marek ; Lattenberg, Ivo (referee) ; Přinosil, Jiří (advisor)
Purpose of this work is show possibility of using grapichs cart for imaging a video signal. This work is particularly focused on technology CUDA and OpenCL. The solution is first focused on graphics cart and show how has been changed components and how has been changed performaces of graphics cart. Then show CUDA and OpenCL technology itself, and show samples of codes with explain, what which code do. Output of this work is some programs, witch defined for both technology and for both procesors unit. Contribution of this work is show differents between procesors unit, witch can be used to right choose for design your own algorithm.
Vertex and Pixel Shaders OpenGL Visualisation of Medical 3D Image Data
Vaďura, Jiří ; Španěl, Michal (referee) ; Kršek, Přemysl (advisor)
This thesis deals with accelerated 3D rendering of medical data, e.g. computed tomography, using a graphics processor and OpenGL library. Raw data slices are send to graphic memory and rendered by a ray-casting algorithm. The goal of this project is high quality visual output and full user interaction at the same time. Multiple rendering modes are avaiable to the user: MIP, X-Ray simulation and realistic shading.

National Repository of Grey Literature : 13 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.