National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Variability and mechanisms of exodermis differentiation in plant roots
Blascheová, Zuzana ; Tylová, Edita (advisor) ; Konrádová, Hana (referee)
Environmental conditions affect the formation of apoplastic barriers (endodermis and exodermis) in roots. This was shown on many species in many research papers. The exodermal layer is more variable in response to stress conditions than endodermal layer. Cadmium toxicity, as many other stresses, induces faster development of apoplastic barriers. Most of research papers published so far, however characterized only the response of main root to this type of stress factor. Lateral roots, an important part of the root system absorptive surface, are neglected and there is not much information about their response to cadmium stress. The pattern of apoplastic barriers development was therefore analysed in main and also in lateral roots of various size and position on maternal root axis. We found significant differences in response to cadmium stress among these different root types. Then we summed up the differences between these types of roots. Short lateral roots were generally more responsive to cadmium stress, cadmium affected root branching as well as differentiation of apoplastic barriers in lateral roots. These results help us to better understand the response of complex roots system to environmental conditions. In the second part of this work, the role of CASP genes in exodermal development was...
Effect of exodermis differentiation on nutrient uptake localization in root
Janoušková, Jana ; Tylová, Edita (advisor) ; Konrádová, Hana (referee)
Plants are able to cope with changing environmental conditions or withstand its adverse effects due to their plastic development. One way to adapt to fluctuating amounts of nutrients and water in the environment or the presence of toxic substances is to regulate the movement of substances between the plant and the environment. Beside other, this regulation is also possible at the level of the root system, by the formation of apoplastic barriers endodermis and exodermis. Some species posses endodermis only, in others exodermis in hypodrermal layers of the root can be found. These barriers differentiate in three stages and prevent free movement of coumpounds though apoplast. The transport to the symplast is the key point of regulating the uptake of substances into the plant and the endodermis is the fundamental structure. The presence of exodermis, however, affects the apoplast permeability of the surface root layers and can therefore influence the involvement of the primary cortex cells in the uptake of substances from the environment. In this work the impact of phosphate deficiency on the formation of apoplastic barriers was studied focusing on exodermis and the effect of its differentiation on the occurrence of membrane transporters and involvement of primary cortex cells in the uptake of...
Effect of exodermis differentiation on nutrient uptake localization in root
Janoušková, Jana ; Tylová, Edita (advisor) ; Konrádová, Hana (referee)
Plants are able to cope with changing environmental conditions or withstand its adverse effects due to their plastic development. One way to adapt to fluctuating amounts of nutrients and water in the environment or the presence of toxic substances is to regulate the movement of substances between the plant and the environment. Beside other, this regulation is also possible at the level of the root system, by the formation of apoplastic barriers endodermis and exodermis. Some species posses endodermis only, in others exodermis in hypodrermal layers of the root can be found. These barriers differentiate in three stages and prevent free movement of coumpounds though apoplast. The transport to the symplast is the key point of regulating the uptake of substances into the plant and the endodermis is the fundamental structure. The presence of exodermis, however, affects the apoplast permeability of the surface root layers and can therefore influence the involvement of the primary cortex cells in the uptake of substances from the environment. In this work the impact of phosphate deficiency on the formation of apoplastic barriers was studied focusing on exodermis and the effect of its differentiation on the occurrence of membrane transporters and involvement of primary cortex cells in the uptake of...
Variability and mechanisms of exodermis differentiation in plant roots
Blascheová, Zuzana ; Tylová, Edita (advisor) ; Konrádová, Hana (referee)
Environmental conditions affect the formation of apoplastic barriers (endodermis and exodermis) in roots. This was shown on many species in many research papers. The exodermal layer is more variable in response to stress conditions than endodermal layer. Cadmium toxicity, as many other stresses, induces faster development of apoplastic barriers. Most of research papers published so far, however characterized only the response of main root to this type of stress factor. Lateral roots, an important part of the root system absorptive surface, are neglected and there is not much information about their response to cadmium stress. The pattern of apoplastic barriers development was therefore analysed in main and also in lateral roots of various size and position on maternal root axis. We found significant differences in response to cadmium stress among these different root types. Then we summed up the differences between these types of roots. Short lateral roots were generally more responsive to cadmium stress, cadmium affected root branching as well as differentiation of apoplastic barriers in lateral roots. These results help us to better understand the response of complex roots system to environmental conditions. In the second part of this work, the role of CASP genes in exodermal development was...
Cellular mechanisms of differentiation of root apoplastic barriers
Namyslov, Jiří ; Tylová, Edita (advisor) ; Konrádová, Hana (referee)
Apoplastic barriers (exodermis and endodermis) are primarily used to regulate the free movement of substances within apoplast due to modifications of cell walls. While at the anatomical level, the barriers are studied for a long time, only recently the molecular mechanisms that are behind the emergence of these modifications are gradually identified. The most important modifications are Casparian strips that fill the space between the adjacent cells in exodermis and endodermis. Casparian strips are lignin-based structures formed with the help of CASP proteins located in equatorial region of plasmalema (called CSD membrane domain). In addition to CASP proteins, the formation of Casparian strip involves activity of site-specific enzymes of lignin synthesis (PER64 peroxidase, NADPH oxidase RBOHF). In these cell layers shortly after differentiation of Casparian strips, the deposition of suberin occurs between plazmalema and primary cell wall leading to formation of suberin lamellae also serving to block the apoplast. Next step of differentiation is the formation of U-shaped tertiary thickenings that are formed by deposition of secondary cell wall, whose formation mechanism in the root endodermis is not yet well-known. Processes responsible for formation of apoplastic barriers are thus related to the...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.