National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Multimode optical fiber based endoscopy
Jákl, Petr ; Tučková, Tereza ; Pikálek, Tomáš ; Stibůrek, Miroslav ; Ondráčková, Petra ; Cifuentes, Angel S. ; Šiler, Martin ; Uhlířová, Hana ; Traegaardh, Johanna ; Čižmár, Tomáš
Optical microscopy is a technique for microworld investigation using light waves scattered on particles in sample space. Its main disadvantage in the area of medicine, microbiology and neurology is its low penetration depth - it is very difficult to image structures deeper than approximately 1 mm inside tissue. Conventional endoscopes use refractive or GRIN lens with cross-section of several milimeters in diameter. Therefore, it is necessary to find less invasive probes to perform imaging in living organisms. Favourable alternative is to use multimode optical fiber probe with 100 micrometer diameter. This approach, however, requires advanced shaping of the wavefront in order to achieve diffraction limited imaging.
Imaging via multimode optical fiber: recovery of a transmission matrix using internal references
Šiler, Martin ; Jákl, Petr ; Traegaardh, Johanna ; Ježek, Jan ; Uhlířová, Hana ; Tučková, Tereza ; Zemánek, Pavel ; Čižmár, Tomáš
Current research of life shows a great desire to study the mechanics of biological processes\ndirectly within the complexity of living organisms. However, majority of practical techniques\nused nowadays for tissue visualization can only reach depths of a few tens of micrometres as\nthe issue obscures deep imaging due to the random light scattering. Several imaging\ntechniques deal with this problems from different angels, such as optical coherence\ntomography, light sheet microscopy or structured light illumination A different and promising strategy to overcome the turbid nature of scattering tissues is to employ multimode optical fibers (MMF) as minimally invasive light guides or endoscopes to provide optical access inside. Although the theoretical description of light propagation through such fibers has been developed a long time ago it is frequently considered inadequate to describe real MMF. The inherent randomization of light propagating through MMFs is typically attributed to undetectable deviations from the ideal fiber structure. It is a commonly believed that this\nadditional chaos is unpredictable and that its influence grows with the length of the fiber.\nDespite this, light transport through MMFs remains deterministic and can be characterized by a transmission matrix (TM) which connects the intensity and phase patterns on the fiber input and output facets. Once the TM is known it can be used to create focus in any desired 3D\ncoordinates beyond the distal fiber facet, see figure 1, and perform e.g. fluorescence based\nlaser scanning microscopy or optical trapping.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.