National Repository of Grey Literature 9 records found  Search took 0.01 seconds. 
Continuous monitoring of anthraquinone-based anticancer drugs by amperometric technique
Skalová, Štěpánka ; Fischer, J. ; Barek, J. ; Navrátil, Tomáš ; Krejčí, J. ; Kučerová, R. ; Vyskočil, V.
This contribution is focused on the development of electroanalytical methods for the monitoring of anthraquinone-based anticancer drugs in physiological solution by combination of liquid-flow system and dialysis catheter, possibly inserted into blood circulation of patients. For this purpose, amperometric detection with dual glassy carbon electrode was developed and derivate of these drugs, anthraquinone-2-sulphonate, was used as a model compound. Two different flow rates of carrier solution (physiological solution) were tested (specifically, 1 and 5 mu L min(-1)) and the dependence of peak currents of anthraquinone-2-sulphonate on its concentration was verified
Development of Novel Electrochemical Methods Using Various Membrane Materials for Monitoring of Selected Anticancer Drugs and Phytochelatins
Skalová, Štěpánka ; Barek, Jiří (advisor) ; Labuda, Ján (referee) ; Trnková, Libuše (referee)
Present Ph.D. Thesis is focused on the development of electrochemical methods for determination of anticancer drugs using various types of membranes for their preliminary separation. Furthermore, this Thesis reports the study of transport mechanisms of heavy metals in the presence of phytochelatins across biological membranes. Sodium anthraquinone-2-sulphonate (AQS) was used as a model compound for its similar structure with anthraquinone-based (AQ-based) anticancer drugs (doxo/daunorubicin) and also due to its better availability. All these compounds can be easily electrochemically oxidized and/or reduced. Redox behaviour of AQS was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in a cathodic region on mercury meniscus modified (m-AgSAE) and polished silver solid amalgam (p-AgSAE) electrodes, Obtained results were used for the development of a micro-volume voltammetric cell (MVVC). Its applicability for voltammetric determination of anticancer drugs was verified by using doxorubicin (DX) as a model substance. The second part of this Thesis deals with therapeutic monitoring of anticancer drugs in the blood circulation of the patients. For pilot experiments, a liquid-flow system with dialysis catheter and amperometric detection was used. The flow rate of carrier...
Development of Novel Electrochemical Methods Using Various Membrane Materials for Monitoring of Selected Anticancer Drugs and Phytochelatins
Skalová, Štěpánka
Present Ph.D. Thesis is focused on the development of electrochemical methods for determination of anticancer drugs using various types of membranes for their preliminary separation. Furthermore, this Thesis reports the study of transport mechanisms of heavy metals in the presence of phytochelatins across biological membranes. Sodium anthraquinone-2-sulphonate (AQS) was used as a model compound for its similar structure with anthraquinone-based (AQ-based) anticancer drugs (doxo/daunorubicin) and also due to its better availability. All these compounds can be easily electrochemically oxidized and/or reduced. Redox behaviour of AQS was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in a cathodic region on mercury meniscus modified (m-AgSAE) and polished silver solid amalgam (p-AgSAE) electrodes, Obtained results were used for the development of a micro-volume voltammetric cell (MVVC). Its applicability for voltammetric determination of anticancer drugs was verified by using doxorubicin (DX) as a model substance. The second part of this Thesis deals with therapeutic monitoring of anticancer drugs in the blood circulation of the patients. For pilot experiments, a liquid-flow system with dialysis catheter and amperometric detection was used. The flow rate of carrier...
Development of Novel Electrochemical Methods Using Various Membrane Materials for Monitoring of Selected Anticancer Drugs and Phytochelatins
Skalová, Štěpánka
Present Ph.D. Thesis is focused on the development of electrochemical methods for determination of anticancer drugs using various types of membranes for their preliminary separation. Furthermore, this Thesis reports the study of transport mechanisms of heavy metals in the presence of phytochelatins across biological membranes. Sodium anthraquinone-2-sulphonate (AQS) was used as a model compound for its similar structure with anthraquinone-based (AQ-based) anticancer drugs (doxo/daunorubicin) and also due to its better availability. All these compounds can be easily electrochemically oxidized and/or reduced. Redox behaviour of AQS was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in a cathodic region on mercury meniscus modified (m-AgSAE) and polished silver solid amalgam (p-AgSAE) electrodes, Obtained results were used for the development of a micro-volume voltammetric cell (MVVC). Its applicability for voltammetric determination of anticancer drugs was verified by using doxorubicin (DX) as a model substance. The second part of this Thesis deals with therapeutic monitoring of anticancer drugs in the blood circulation of the patients. For pilot experiments, a liquid-flow system with dialysis catheter and amperometric detection was used. The flow rate of carrier...
Development of Novel Electrochemical Methods Using Various Membrane Materials for Monitoring of Selected Anticancer Drugs and Phytochelatins
Skalová, Štěpánka ; Barek, Jiří (advisor) ; Labuda, Ján (referee) ; Trnková, Libuše (referee)
Present Ph.D. Thesis is focused on the development of electrochemical methods for determination of anticancer drugs using various types of membranes for their preliminary separation. Furthermore, this Thesis reports the study of transport mechanisms of heavy metals in the presence of phytochelatins across biological membranes. Sodium anthraquinone-2-sulphonate (AQS) was used as a model compound for its similar structure with anthraquinone-based (AQ-based) anticancer drugs (doxo/daunorubicin) and also due to its better availability. All these compounds can be easily electrochemically oxidized and/or reduced. Redox behaviour of AQS was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in a cathodic region on mercury meniscus modified (m-AgSAE) and polished silver solid amalgam (p-AgSAE) electrodes, Obtained results were used for the development of a micro-volume voltammetric cell (MVVC). Its applicability for voltammetric determination of anticancer drugs was verified by using doxorubicin (DX) as a model substance. The second part of this Thesis deals with therapeutic monitoring of anticancer drugs in the blood circulation of the patients. For pilot experiments, a liquid-flow system with dialysis catheter and amperometric detection was used. The flow rate of carrier...
Application of a Micro-Volume Voltammetric Cell for Determination of Doxorubicin Hydrochloride
Skalová, Štěpánka ; Navrátil, Tomáš ; Barek, J. ; Vyskočil, V.
Doxorubicin is an anticancer drug, which is used for treatment of various cancer types. It contains a quinone structure, similarly as some other drugs belonging to the same category (e.g., daunorubicin and epirubicin). Its monitoring can lead to optimization of individual patient dosages and increase chances for recovery of patients. A micro-volume voltammetric cell and differential pulse cathodic stripping voltammetry have been used for determination of doxorubicin hydrochloride. A volume of used sample was 50 microL. Limit of detection was 0.39 micromol L-1. An applicability of this method was verified on samples of drinking water and of human urine.
Pilot Experiments With a Micro-Volume Voltammetric Cell for the Determination of Electrochemically Reducible Organic Compounds
Skalová, Štěpánka ; Barek, J. ; Rodrigues, J. A. ; Goncalves, L.M. ; Navrátil, Tomáš ; Vyskočil, V.
A new micro-volume voltammetric cell for analysis of small volumes\nof electrochemically reducible organic compounds was developed\nand tested. The sample (20-100 mu L) is placed in a narrow glass tube\nwith an agar membrane at the bottom and the working electrode is\nimmersed into the sample. The agar membrane, as anion permeable\nlayer, electrically connects the workin g e lectrode immersed in the\nanalysed sample in the glass tube with a large-volume compartment\n(20 mL) filled with Britton-Robinson buffer, where conventional nonminiaturized\nreference and auxiliary electrodes are placed. The system\nwas tested using a polished silver solid amalgam electrode\n(p-AgSAE) as a working electrode. Sodium anthraquinone-2-sulfonate\nwas used as a model compound because it is intended to use this\nsystem to monitor electrochemically reducible organic compounds.
Electrochemical determination of 2-nitrofluorene and investigation of its interaction with DNA
Skalová, Štěpánka ; Stávková, K. ; Barek, J. ; Vyskočil, V.
2-Nitrofluorene (2-NF) belongs to the group of nitrated polycyclic aromatic hydrocarbons. These compounds are categorized as environmental pollutants and they can manifest mutagenic and carcinogenic effects. A differential pulse voltammetric method at a glassy carbon electrode (GCE) was developed for sensitive determination of 2-NF. Under the optimum conditions found, a linear calibration dependence was obtained in the concentration range of 2 x 10(-7) - 1 x 10(-5) mol L-1, with the limit of quantification of 2 x 10 mol L-1. The practical applicability of this method was verified on the direct determination of 2-NF in a model sample of sand. Moreover, the mutual interaction between 2-NF and DNA was investigated using an electrochemical DNA biosensor (DNA-modified GCE). Cyclic voltammetry, electrochemical impedance spectroscopy, and square-wave voltammetry were employed in this study, confirming the formation of a 2-NF-DNA complex.\n
Study of 2-Nitrofluorene Interaction with DNA at a Glassy Carbon Electrode
Skalová, Štěpánka ; Stávková, K. ; Vyskočil, V. ; Barek, J.
2-Nitrofluorene (2-NF) is a nitrated polycyclic aromatic hydrocarbon (NPAH) which occurs as the environmental pollutant. It is a potential carcinogen and mutagen. Interaction of deoxyribonucleic acid (DNA) with 2-NF was monitored using an electrochemical DNA biosensor prepared from a glassy carbon electrode (GCE) and low-molecular-weight DNA by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square-wave voltammetry (SWV).\nThere were no damaging interactions observed between DNA and 2-NF using EIS. However, CV shows intercalation of this substance into the DNA structure to form the complex 2-NF–DNA. Intercalation was also observed by SWV, confirming intercalation to reduce the number of electroactive sites and thus reducing the peak heights of adenosine and guanosine.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.