National Repository of Grey Literature 19 records found  previous11 - 19  jump to record: Search took 0.01 seconds. 
Raman tweezers in microfluidic systems for automatic analysis and sorting of living cells
Pilát, Zdeněk
We have devised an automatic analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment, together with computerized real time image analysis, spectra processing and micromanipulation. This device serves to identify and sort biological objects, such as living cells of various prokaryotic and eukaryotic organisms based on their Raman spectral properties. This approach allowed us to collect information about the chemical composition of the objects, such as the presence and composition of lipids, proteins, or nucleic acids without using artificial chemical probes such as fluorescent markers. The non-destructive and non-contact nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. The special microfluidic chip uses gravity to move the cells across the sorting area. Our system uses dedicated software to achieve fully automated spectral analysis and sorting. The devised system is a robust and universal platform for non-contact sorting of microobjects based on their chemical properties. It could find its use in many medical, biotechnological, and biological applications.
Raman tweezers for sorting of living cells
Pilát, Zdeněk ; Ježek, Jan ; Kaňka, Jan ; Šerý, Mojmír ; Jákl, Petr ; Zemánek, Pavel
We have developed an instrument for automatized analysis and sorting of living cells of unicellular algae and other micro-objects based on laser tweezers and Raman spectroscopy. The system comprises the Raman tweezers setup, special microfluidic chip, and a specialized software allowing image recognition, spectral analysis, and automated sorting functions. The resulting instrument allows non-destructive analysis of chemical properties of living cells and their automatic separation for further examination or cultivation.
Opticaly trapped tunable droplet microlaser
Ježek, Jan ; Pilát, Zdeněk ; Brzobohatý, Oto ; Jonáš, Alexandr ; Aas, M. ; Kiraz, A. ; Zemánek, Pavel
We introduce tunable optofluidic microlasers based on optically stretched, dye-doped emulsion droplets confined in a dual-beam optical trap. Droplets were created in microfuidic chips. Optically trapped microdroplets of oil emulsified in water and stained with fluorescent dye act as an active ultrahigh-Q optical resonant cavities hosting whispering gallery modes (WGMs). All-optical tuning of the laser emission wavelength was achieved by a controlled deformation of the droplet shape using light-induced forces generated by dual-beam optical trap.
Raman tweezers: principle and applications
Bernatová, Silvie ; Samek, Ota ; Pilát, Zdeněk ; Ježek, Jan ; Kaňka, Jan ; Šiler, Martin ; Zemánek, Pavel
Raman tweezers combines the optical trap for non-contact micromanipulation of micro-objects with Raman spectroscopy for chemical analysis of the sample. This combination presents an efficient tool for concurrent spectroscopic analysis of chemical composition and micromanipulation allowing sorting or probing of mechanical properties of the sample. Raman tweezers were successfully used for example in characterization of biomolecules like DNA, for sorting of cells and investigation of the link between their chemical and mechanical properties.
Raman microspectroscopy of living cells
Samek, Ota ; Pilát, Zdeněk ; Jonáš, Alexandr ; Zemánek, Pavel
Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy for the analysis of selected living cells.

National Repository of Grey Literature : 19 records found   previous11 - 19  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.