National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Isolation of DNA from probitic products using solid carriers
Bonczek, Ondřej ; Horák, Daniel (referee) ; Rittich, Bohuslav (advisor)
Microbial DNA was isolated from lysed cells of Lactobacillus genus in probiotic products. Reversible adsorption DNA on the surface of carboxyl coated nonporous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) magnetic particles and silicagel coated manganase Perovskite nanoparticles. DNA was adsorbed on the surface of the particles in the presence of 16 % poly(ethylenglycol) (PEG 6000) and 2 M sodium chloride (NaCl) concentrations. The adsorbed DNA was released from particles by low ionic strength TE buffer (pH= 8.0). The quality of isolated DNA was checked by spectrofotometric measurement and PCR amplification. DNA samples isolated using magnetic particles and phenol extraction method (control method) were PCR-ready. The DNA isolated from lysed cells of probiotic products was quantificated in real-time qPCR.
Molecular basis of hypodontia
Bonczek, Ondřej
The tooth development (odontogenesis) is a complicated and dynamic process involving many proteins. They interact with each other to create a complex signaling network. Irreversible agenesis of the teeth (hypodontia) may occur by disrupting the necessary balance. This congenital absence of one or more teeth may have a genetic cause and/or may be caused by environmental factors (drugs, trauma etc.). PAX9, MSX1, AXIN2, EDA, EDAR and WNT10a genes are most frequently mentioned in the literature. This work deals with odontogenesis in biological and molecular aspects in its introduction and describes results of mutations and polymorphisms of selected genes in patients and control subjects of Czech population. Gene regions have been studied by molecular biology techniques - capillary sequencing and next-generation sequencing (NGS). The results of this study show that the most missing teeth in the patient group were the third molars in both jaws, followed by the second premolars in the lower and upper jaws and lateral incisors in the upper jaw. The most significant genetic results include the g.9527G>T mutation in the splice site of the PAX9 gene and g.8177G>T mutation in the MSX1 gene, which leads to a stop codon. Both heterozygous substitutions have been identified in probands suffering from oligodontia,...
Molecular basis of hypodontia
Bonczek, Ondřej
The tooth development (odontogenesis) is a complicated and dynamic process involving many proteins. They interact with each other to create a complex signaling network. Irreversible agenesis of the teeth (hypodontia) may occur by disrupting the necessary balance. This congenital absence of one or more teeth may have a genetic cause and/or may be caused by environmental factors (drugs, trauma etc.). PAX9, MSX1, AXIN2, EDA, EDAR and WNT10a genes are most frequently mentioned in the literature. This work deals with odontogenesis in biological and molecular aspects in its introduction and describes results of mutations and polymorphisms of selected genes in patients and control subjects of Czech population. Gene regions have been studied by molecular biology techniques - capillary sequencing and next-generation sequencing (NGS). The results of this study show that the most missing teeth in the patient group were the third molars in both jaws, followed by the second premolars in the lower and upper jaws and lateral incisors in the upper jaw. The most significant genetic results include the g.9527G>T mutation in the splice site of the PAX9 gene and g.8177G>T mutation in the MSX1 gene, which leads to a stop codon. Both heterozygous substitutions have been identified in probands suffering from oligodontia,...
Isolation of DNA from probitic products using solid carriers
Bonczek, Ondřej ; Horák, Daniel (referee) ; Rittich, Bohuslav (advisor)
Microbial DNA was isolated from lysed cells of Lactobacillus genus in probiotic products. Reversible adsorption DNA on the surface of carboxyl coated nonporous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) magnetic particles and silicagel coated manganase Perovskite nanoparticles. DNA was adsorbed on the surface of the particles in the presence of 16 % poly(ethylenglycol) (PEG 6000) and 2 M sodium chloride (NaCl) concentrations. The adsorbed DNA was released from particles by low ionic strength TE buffer (pH= 8.0). The quality of isolated DNA was checked by spectrofotometric measurement and PCR amplification. DNA samples isolated using magnetic particles and phenol extraction method (control method) were PCR-ready. The DNA isolated from lysed cells of probiotic products was quantificated in real-time qPCR.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.