Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.01 vteřin. 
Algebraic Substructures in Cm
Kala, Vítězslav ; Kepka, Tomáš (vedoucí práce) ; Stanovský, David (oponent) ; El Bashir, Robert (oponent)
Název práce: Algebraické podstruktury v ℂ Autor: Vítězslav Kala Katedra: Katedra algebry Vedoucí disertační práce: Prof. RNDr. Tomáš Kepka, DrSc., Katedra algebry Abstrakt: Tato práce je zaměřena na studium struktury konečně generovaných polookruhů, parapolotěles a dalších algebraických struktur za použití geomet- rických metod založených na algebraických podstrukturách Euklidovského pro- storu ℂ . Parapolotělesu , které je konečně generované jako polookruh, přiřadíme vhod- nou podpologrupu pologrupy ℕ0 (definovanou pomocí prvků takových, že + = pro nějaké ∈ a ∈ ℕ). Algebraické a geometrické vlastnosti obsahují důležité informace o struktuře ; použijeme jich k důkazu, že pokud je parapolotěleso 2-generované jako polookruh, pak je aditivně idempotentní. Uvedeme také okruhové přeformulování této hypotézy pro případ -generovaných polookruhů. Dále klasifikujeme všechna aditivně idempotentní parapolotělesa, která jsou ko- nečně generovaná jako polookruh, za použití skutečnosti, že odpovídají třídě jistých konečně generovaných unitálních svazově uspořádaných grup. Ty nedávno klasifikovali Busaniche, Cabrer a Mundici [4] pomocí kombinatorických a geomet- rických "hvězdných posloupností", což jsou posloupnosti...
Geometric and algebraic properties of discrete structures
Rytíř, Pavel ; Loebl, Martin (vedoucí práce) ; Serra, Oriol (oponent) ; Kaiser, Tomáš (oponent)
V práci se zabýváme dvou-dimenzionálními simpliciálními komplexy a lineárními kódy. Řekneme, že lineární kód C nad tělesem F je trojúhelníkově reprezentovatelný, pokud exis- tuje dvou-dimenzionální simpliciální komplex ∆ takový, že kód C je propíchnutým kódem jádra ker ∆ incidenční matice simpliciálního komplexu ∆ nad F a dim C = dim ker ∆. Tento simpliciální komplex nazveme geometrickou reprezentací kódu C. Dokážeme, že každý lineární kód nad prvotělesem je trojúhelníkově reprezentovatelný. Pro konečná prvotělesa sestrojíme geometrickou reprezentaci takovou, že váhový polynom kódu C je dán jednoduchou formulí váhového polynomu prostoru cyklů simpliciálního kom- plexu ∆. Tedy geometrická reprezentace kódu C určuje jeho váhový polynom. Naše motivace pochází z teorie pfaffiánovských orientací grafů, která poskytuje polyno- miální algoritmus pro výpočet váhového polynomu prostoru řezů grafu s omezeným rodem. Tento algoritmus využívá geometrických vlastností nakreslení grafu na orientovatelnou ri- emannovskou plochu. Prostor řezů je lineární kód a odpovídající graf je jeho užitečnou geometrickou reprezentací. Dále studujeme vnořitelnost geometrických reprezentací do euklidovských prostorů. Ukážeme, že každý binární lineární kód má geometrickou reprezentaci v R4 . Charakte- rizujeme binární lineární kódy, které...
Geometric and algebraic properties of discrete structures
Rytíř, Pavel ; Loebl, Martin (vedoucí práce) ; Serra, Oriol (oponent) ; Kaiser, Tomáš (oponent)
V práci se zabýváme dvou-dimenzionálními simpliciálními komplexy a lineárními kódy. Řekneme, že lineární kód C nad tělesem F je trojúhelníkově reprezentovatelný, pokud exis- tuje dvou-dimenzionální simpliciální komplex ∆ takový, že kód C je propíchnutým kódem jádra ker ∆ incidenční matice simpliciálního komplexu ∆ nad F a dim C = dim ker ∆. Tento simpliciální komplex nazveme geometrickou reprezentací kódu C. Dokážeme, že každý lineární kód nad prvotělesem je trojúhelníkově reprezentovatelný. Pro konečná prvotělesa sestrojíme geometrickou reprezentaci takovou, že váhový polynom kódu C je dán jednoduchou formulí váhového polynomu prostoru cyklů simpliciálního kom- plexu ∆. Tedy geometrická reprezentace kódu C určuje jeho váhový polynom. Naše motivace pochází z teorie pfaffiánovských orientací grafů, která poskytuje polyno- miální algoritmus pro výpočet váhového polynomu prostoru řezů grafu s omezeným rodem. Tento algoritmus využívá geometrických vlastností nakreslení grafu na orientovatelnou ri- emannovskou plochu. Prostor řezů je lineární kód a odpovídající graf je jeho užitečnou geometrickou reprezentací. Dále studujeme vnořitelnost geometrických reprezentací do euklidovských prostorů. Ukážeme, že každý binární lineární kód má geometrickou reprezentaci v R4 . Charakte- rizujeme binární lineární kódy, které...
Algebraic Substructures in Cm
Kala, Vítězslav ; Kepka, Tomáš (vedoucí práce) ; Stanovský, David (oponent) ; El Bashir, Robert (oponent)
Název práce: Algebraické podstruktury v ℂ Autor: Vítězslav Kala Katedra: Katedra algebry Vedoucí disertační práce: Prof. RNDr. Tomáš Kepka, DrSc., Katedra algebry Abstrakt: Tato práce je zaměřena na studium struktury konečně generovaných polookruhů, parapolotěles a dalších algebraických struktur za použití geomet- rických metod založených na algebraických podstrukturách Euklidovského pro- storu ℂ . Parapolotělesu , které je konečně generované jako polookruh, přiřadíme vhod- nou podpologrupu pologrupy ℕ0 (definovanou pomocí prvků takových, že + = pro nějaké ∈ a ∈ ℕ). Algebraické a geometrické vlastnosti obsahují důležité informace o struktuře ; použijeme jich k důkazu, že pokud je parapolotěleso 2-generované jako polookruh, pak je aditivně idempotentní. Uvedeme také okruhové přeformulování této hypotézy pro případ -generovaných polookruhů. Dále klasifikujeme všechna aditivně idempotentní parapolotělesa, která jsou ko- nečně generovaná jako polookruh, za použití skutečnosti, že odpovídají třídě jistých konečně generovaných unitálních svazově uspořádaných grup. Ty nedávno klasifikovali Busaniche, Cabrer a Mundici [4] pomocí kombinatorických a geomet- rických "hvězdných posloupností", což jsou posloupnosti...
Topological and geometrical combinatorics
Tancer, Martin ; Matoušek, Jiří (vedoucí práce) ; Pultr, Aleš (oponent) ; Kaiser, Tomáš (oponent) ; Meshulam, Roy (oponent)
1 Topological and Geometrical Combinatorics Martin Tancer Český abstrakt práce Cílem práce je prezentovat několik nových výsledků v oblasti topologických metod v kombinatorice. Výsledky lze zařadit do dvou hlavních oblastí. První oblast pokrývá průsečíkové struktury konvexních množin. V práci je ukázáno, že konečné projektivní roviny nemůžou být průsečíkovými strukturami konvexních množin pevné dimenze, což odpovídá na otázku Alona, Kalaie, Matouška a Meshu- lama. Dále je ukázáno, že d-kolabovatelnost (nutná podmínka na vlastnosti průsečíkových struktur konvexních množin v dimenzi d) je NP-těžká k rozpoznání pro d ≥ 4. A také je ukázáno, že d-kolabovatelnost není nutnou podmínkou na vlastnosti průsečíkových vzorů dobrých pokrytí, což vyvrací domněnku G. Wegnera z roku 1975. Do druhé oblasti spadá několik výsledků ohledně algoritmické obtížnosti rozpoz- návání simpliciálních komplexů vnořitelných do Rd . Konkrétněji, je algortmicky ne- rozhodnutelné, zda lze k-rozměrný simpliciální komplex po částech lineárně vnořit do Rd , pokud d ≥ 5 a k ∈ {d − 1, d}. Dále je tento problém NP-těžký, pokud d ≥ 4 a d ≥ k ≥ 2d−2 3 .

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.