Národní úložiště šedé literatury Nalezeno 16 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Electrospinning of Modified Biopolymers for Medical Applications
Pavliňáková, Veronika ; Martinová,, Lenka (oponent) ; Zajíčková, Lenka (oponent) ; Vojtová, Lucy (vedoucí práce)
Proposed dissertation thesis is dedicated to the preparation and characterization of novel biocompatible nanofibers with both biological and medical potential applications. The main emphasis of this thesis was focused on the preparation of composite nanofibers respecting the principles of "green chemistry", meaning hard requirements of tissue engineering. The theoretical part summarizes knowledge about the electrospinning process and its parameters. The literature review also describes the electrospinning of proteins like collagen and gelatin, their blends with synthetic polymers and biopolymers as well as with inorganic fillers. One chapter deals with various kinds of crosslinking agents to improve nanofiber hydrolytic stability. The last chapter is aimed to halloysite inorganic nanotubes (HNT) gaining much attention for the use as drug carrier due to its remarkable physical (mechanical reinforcement) and biological (biocompatibility and low toxicity) properties. The experimental part is divided into two chapters, each of them examines issues of nanofibrous material preparation from different perspective. The first part is focused on novel hydrolytically stable antibacterial gelatin nanofibers modified with oxidized cellulose. The unique inhibitory effect of the nanofibers was examined by luminometric method using genetically modified Escherichia coli strain. Seeded adenocarcinoma lung cells proved good adhesion and proliferation. Second experimental part explores the effect of source and amount of natural tubular halloysite on the structure and properties of biocompatible amphiphilic nanofibers based on a polycaprolactone and gelatin. The addition of HNT improved the thermal stability, mechanical properties (both stiffness and elongation) and reduced the crystallinity of nanofibers. The HNT from different sources did not affect the cell behavior but slightly influenced the proliferation and viability of cells on nanofibers.
Polykaprolakton, jeho syntéza, charakterizace a degradabilita
Boháčová, Zdeňka ; Vojtová, Lucy (oponent) ; Hermanová, Soňa (vedoucí práce)
Předložená diplomová práce se zabývá studiem polymerace za otevření kruhu (ROP) kaprolaktonu katalyzované pomocí nových organických a organokovových sloučenin. V teoretické části práce jsou na základě literární rešerše popsány přehledy syntetických strategií a katalytických/iniciačních systémů pro ROP laktonů. V experimentální části byla provedena série polymerací -kaprolaktonu zaměřená na studium polymeračních podmínek (poměry rozpouštědlo/monomer, katalyzátor/iniciátor, monomer/iniciátor a koncentrace monomeru) v rozmezí teplot 25-70 °C. Provedená experimentální studie byla zaměřena na katalytické prekurzory na bázi organických karbenů (tBuNCH=CHN+tBu)CH Cl- (NHC-tBu) v roztoku tetrahydrofuranu a triazolového komplexu hliníku {O,O’-[4,5-P(O)Ph2tz]-AlMe2}, Ph = fenyl, tz = triazol, (OAlMe2) v roztoku chlorbenzenu. Připravené polymery byly charakterizovány pomocí 1H NMR spektroskopie (Bruker Avance), diferenciální skenovací kalorimetrie (TA Instruments Q 2000) a gelové permeační chromatografie (Agilent Technologies 1100 series). U připraveného vzorku s Mn = 12 kg/mol, Mw/Mn = 2,5 a se stupněm krystalinity 53 % byla otestována degradabilita účinkem mikroorganismu. Polymer ve formě lisované fólie a prášku byl vystaven působení bakteriálního kmene Bacillus subtilis (BS) v minerálním a živném médiu po dobu 42 dnů. Rastrovací elektronová mikroskopie (SEM) a konfokální laserová rastrovací mikroskopie (CLSM) potvrdily vývoj trhlin na povrchu filmu v porovnání s nezměněným povrchem kontrolních vzorků jako následek mikrobiálního ataku. Dále bylo pozorováno rozvinutí růžového zbarvení suspenze polymeru v důsledku aktivity mikroorganismu.
Biodegradable polyurethanes based on poly(ethylene glycol)
Kupka, Vojtěch ; Žídek, Jan (oponent) ; Vojtová, Lucy (vedoucí práce)
Presented diploma thesis deals with synthesis of biodegradable polyurethanes (bio-PUs) based on poly(ethylene glycol) (PEG) and poly(e-caprolactone) (PCL) with potential use in medicine. The aim of the work was to develop the methodology for synthesis of elastomeric polyurethane that could be formed into scaffold applicable in tissue engineering for regenerative human medicine. The theoretical part summarizes the knowledge of various kinds of materials which are possible to use for intended application. Scaffold forming techniques, their biocompatibility and characterization of properties of resulting materials are involved. The experimental part is focused on the development of suitable methodology to prepare functional samples based on PEG, PCL, hexamethylene diisocyanate (HMDI) and stannous octoate as the catalyst. Effect of bio-PUs composition (mainly different amount and molecular weight of PEG) on the swelling and hydrolytic stability was investigated together with testing mechanical properties, monitoring the net formation and the degree of conversion. The morphology of prepared samples was analyzed by optical microscopy, chemical composition was confirmed by infrared spectroscopy and the thermal properties were measured by differential scanning calorimetry. As for methodology development, it was found that it is necessary to degas all feedstocks before synthesis, otherwise non-well polymerized samples with different pore size have been obtained. Synthesis of bio-PU was realized under the nitrogen atmosphere in two steps. First, both polyols (PEG and PCL) were homogenized on the vacuum line at 130 °C followed by the addition of HMDI in the second step at 65 °C in glove-bag to obtain bio-PU samples. Finally samples were cured at the mould for 48 hours at 65 °C in oven. Based on the physical conditions of samples preparations, flexible bio-PU from white films through cloudy (with visible phase separation) to transparent films (clear) were obtained. Phase separation was confirmed by optical microscopy showing typical spherulite structure of crystalline phase (PCL) in amorphous matrix of PEG. The monitoring of net formation confirmed maximal conversion of polymerization (96 %) already after 4 hours of curing in the oven. Mechanical properties testing showed that important influence to rupture strength has isocyanate index (NCO/OH ratio). Different molecular weight of PEG showed influence to tensile properties as the specimens were completely cross-linked. Characterization of swelling exhibited increase the water uptake of samples with growing molecular weight of PEG (from 28 up to 58 wt.%). As well as, the bio- PU samples having higher molecular weight of PEG degraded faster in water at 37 °C. In presented diploma thesis was confirmed that it is possible to control the hydrolytic stability of obtained biodegradable polyurethane elastomers by the amount and the molecular weight of PEG.
Polymerace a kopolymerace e-kaprolaktonu pomocí organických a organokovových katalyzátorů
Smrčková, Markéta ; Vojtová, Lucy (oponent) ; Hermanová, Soňa (vedoucí práce)
Alifatické polyestery představují díky své biodegradabilitě a biokompatibilitě skupinu vhodných kandidátů pro oblast biomateriálů. Jejich praktické využití v biomedicíně je však podmíněno dostupností reprodukovatelné syntézy definovaných produktů s absencí reziduí katalyzátorů působících v lidském těle nežádoucí imunologickou odezvu. Teoretická část práce se zabývá přehledem iniciačních/katalytických systémů a syntetických strategiíí přípravy polykaprolaktonu. Cílem této práce bylo v připravených polyesterech experimentálně ověřit přítomnost stop katalyzátorů na bázi organických karbenů a organokovových komplexů hliníku. Série vzorků polykaprolaktonu (PCL) byla přečištěna pomocí reprecipitace v methanolu při -10 °C. Přítomnost katalytických reziduí v PCL po každém čistícím kroku byla sledována pomocí 1H NMR (Bruker Avance). Reziduální množství hliníku bylo stanoveno pomocí atomové absorpční spektrometrie (AAS) a hmotnostní spektrometrie s indukčně vázaným plazmatem (ICP MS).
Příprava a charakterizace nanovláken na bázi biopolymerů
Nemčovský, Jakub ; Ručková, Jana (oponent) ; Částková, Klára (vedoucí práce)
Témou bakalárskej práce je príprava a charakterizácia nanovlákien na bázi biopolymérov. Teoretická časť zhrňuje doposiaľ známe informácie v oblasti biopolymérov, jejich vlastností, prípravy a možnosti analýzy. Experimentálna časť je zameraná na prípravu biopolymérnych vlákien metódou elektrostatického zvlákňovania a na ich charakterizáciu.
Modification of Biodegradable Polyurethanes by Biologically Active Substances
Kupka, Vojtěch ; Khunová, Viera (oponent) ; Pekař, Miloslav (oponent) ; Vojtová, Lucy (vedoucí práce)
Presented dissertation thesis is focused on novel preparation of biodegradable polyurethanes (PUs) and their modification by biologically active cellulose nanocrystals. Literary review deals with current state of bioresorbable PUs used in tissue engineering. Examples of prepared PU elastomers, scaffolds and injectable PUs, together with biodegradation pathways to non-toxic products are summarized. The last part of the literary review is targeting on nanocellulose, which has gained much attention for the use as biomedical material due to its remarkable physical (high specific surface area, mechanical reinforcement) and biological (biocompatibility, biodegradability and low toxicity) properties. Experimental part presents characterization of biodegradable amphiphilic polyurethane films (bio-PUs) synthesized by solvent free polyaddition reaction of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(e-caprolactone) (PCL) as macrodiols with hexamethylene diisocyanate. Prepared bio-PUs were characterized on one hand by means of different PEG/PCL ratio and on the other hand by changing the isocyanate ratio between NCO/OH groups. Abrupt enhancement of mechanical properties was observed when PEG/PCL weight ratio was equal to or less than 20/80 and was ascribed to the PCL ability to form crystalline domains. The increasing amount of PEG promoted the ability of bio-PUs to absorb water and enhance the rate of hydrolytic degradation. Whereas, reducing the ability of bio-PUs to absorb water and prolonged time of hydrolytic degradation was achieved with increasing the crosslink density by enhancing the isocyanate ratio. The last part deals with novel solvent free preparation of nanocomposite utilizing bio-PU as a matrix and cellulose nanocrystals either neat or surface grafted by PEG. Structural analysis demonstrated that the presence of rod-like nanoparticles causes the immobilization of the PU chains in matrix resulting in increased stiffness and rigidity of bio-PU/cellulose nanocomposite. By adjusting the PEG/PCL ratio, the amount of isocyanate or the presence of nanofiller, the novel bio-PU material with desirable mechanical (toughness, flexibility) and physical (swelling, degradation) properties can be obtained. Prepared solvent free bio-PUs may advantageously be used in regenerative medicine for soft tissue regeneration (e.g. as vascular grafts).
Advanced preparation of inorganic (ceramic) particles and nanostructures
Šťastná, Eva ; Martinovou,, Lenku (oponent) ; Vojtová, Lucy (oponent) ; Částková, Klára (vedoucí práce)
An electrospinning process was used for bioactive nanofibrous structures preparation. Neat polycaprolactone nanofibres and polycaprolactone nanofibres containing hydroxyapatite nanoparticles were successfully prepared via electrospinning and characterized using scanning electron microscopy. Mechanical properties of the nanofibres were analyzed using uniaxial tensile strength test. Results of the testing showed strong influence of the nanofibres direction alignment and nanoparticles presence on the mechanical properties of the prepared structures. The direction alignment contributed to higher elastic modulus and failure stress regardless the presence of the hydroxyapatite nanoparticles in the structure. However, the direction alignment considerably reduced failure strain of the structure. An interesting phenomenon occurred by the composite nanofibres – the influence of the hydroxyapatite particles was more distinct by the random fibres (they worsened failure strain and failure stress of the random composite fibres) but the hydroxyapatite particles did not have such strong effect on the parallelly aligned fibres. The samples were then modified by surface low-temperature plasma treatment to improve biological properties of the nanofibres. Change of the nanofibres surface characteristics was examined by contact angle measurement by sessile drop method and by XPS spectroscopy. The contact angle measurement showed that the plasma treatment considerably increased structures hydrophilicity – was unmeasurable. The XPS analysis explained the effect of the plasma treatment on microscopical scale – the plasma treatment had affected only polymer constituent of the treated structure, the hydroxyapatite nanoparticles remained intact. Selected prepared structures were biologically tested. Test in simulated body fluid proved high bioactivity of the polycaprolactone/hydroxyapatite composite nanofibres through precipitation of calcium phosphates phases on the composite structures. Following in-vitro tests using living cell cultures (ISO 10993-5 and WST-8 test) proved beneficial influence of the hydroxyapatite in the structure and of the surface plasma treatment when bioactivity of the plasma treated composite structures increased 1.5 times compared to the neat as-spun polycaprolactone fibres.
Stability of controlled drug release systems based on plasticized starch
Zhukouskaya, Hanna ; Štěpánek, Miroslav (vedoucí práce) ; Hrubý, Martin (oponent)
Tato diplomová práce je zaměřena na výzkum stability systémů pro řízené uvolňování léčiv na bázi sloužící nosičem směsi plastifikovaného škrobu a polykaprolaktonu (TPS/PCL). Jako modelové léčivo bylo použito antibiotikum vankomycin, jehož uvolňování z TPS/PCL pelet do vodného prostředí bylo sledováno UV-spektroskopií, a získané časové závislosti byly popsány jednoduchým kinetickým modelem. Kromě toho bylo studováno současné uvolňování částic škrobu do okolní kapalné fáze pomocí statického a dynamického rozptylu světla, a zároveň i transmisní elektronové mikroskopie (TEM), s cílem získaní informace o stabilitě biodegradabilní matrice a o struktuře produktů rozkladu pelet v nanoměřítku. Klíčová slova: vankomycin, škrob, systém pro dopravu léčiv, polykaprolakton, uvolňování částic, dynamický rozptyl světla, statický rozptyl světla
Advanced preparation of inorganic (ceramic) particles and nanostructures
Šťastná, Eva ; Martinovou,, Lenku (oponent) ; Vojtová, Lucy (oponent) ; Částková, Klára (vedoucí práce)
An electrospinning process was used for bioactive nanofibrous structures preparation. Neat polycaprolactone nanofibres and polycaprolactone nanofibres containing hydroxyapatite nanoparticles were successfully prepared via electrospinning and characterized using scanning electron microscopy. Mechanical properties of the nanofibres were analyzed using uniaxial tensile strength test. Results of the testing showed strong influence of the nanofibres direction alignment and nanoparticles presence on the mechanical properties of the prepared structures. The direction alignment contributed to higher elastic modulus and failure stress regardless the presence of the hydroxyapatite nanoparticles in the structure. However, the direction alignment considerably reduced failure strain of the structure. An interesting phenomenon occurred by the composite nanofibres – the influence of the hydroxyapatite particles was more distinct by the random fibres (they worsened failure strain and failure stress of the random composite fibres) but the hydroxyapatite particles did not have such strong effect on the parallelly aligned fibres. The samples were then modified by surface low-temperature plasma treatment to improve biological properties of the nanofibres. Change of the nanofibres surface characteristics was examined by contact angle measurement by sessile drop method and by XPS spectroscopy. The contact angle measurement showed that the plasma treatment considerably increased structures hydrophilicity – was unmeasurable. The XPS analysis explained the effect of the plasma treatment on microscopical scale – the plasma treatment had affected only polymer constituent of the treated structure, the hydroxyapatite nanoparticles remained intact. Selected prepared structures were biologically tested. Test in simulated body fluid proved high bioactivity of the polycaprolactone/hydroxyapatite composite nanofibres through precipitation of calcium phosphates phases on the composite structures. Following in-vitro tests using living cell cultures (ISO 10993-5 and WST-8 test) proved beneficial influence of the hydroxyapatite in the structure and of the surface plasma treatment when bioactivity of the plasma treated composite structures increased 1.5 times compared to the neat as-spun polycaprolactone fibres.
Use of Nanomaterials in Fortification of Anastomoses on the Gastrointestinal Tract
Rosendorf, Jáchym ; Liška, Václav (vedoucí práce) ; Herrmann, Inge K. (oponent) ; Wexner, Steven D. (oponent)
Úvod: Hlavním tématem dizertační práce je užití nanovlákenných biodegradabilních materiálů pro podporu hojení střevních anastomóz v kolorektální chirurgii. Alterovaný proces hojení střevní anastomózy může vést k několika typům lokálních komplikací. Anastomotický leak je přitom jednou z nejzávažnějších. Těžký anastomotický leak způsobuje rozvoj peritonitidy, sepse a je tedy život ohrožujícím stavem. V řadě případů je nutná reoperace a na ni navazující intenzivní péče, prodloužení hospitalizace a často následné snížení kvality života pacienta. Dalším zdrojem pooperačních komplikací je i extenzivní tvorba peritoneálních adhezí. Ty jsou častou příčinou abdominálního diskomfortu, poruch pasáže, a jsou tak nejčastější příčinou re-admisí po kolorektálních chirurgických výkonech. Nanovlákenné materiály prokázaly v řadě aplikací pozitivní vliv na proces hojení. Naším cílem bylo vyvinout optimální biodegradabilní nanovlákenný patch pro prevenci anastomotického leaku a extenzivní tvorby peritoneálních adhezí. Metodika: Provedli jsme tři na sebe navazující experimentální studie na prasečích modelech. V Experimentu A jsme vyvinuli polykaprolaktonový patch a patch z kopolymeru polykaprolaktonu a kyseliny polymléčné. Ty jsme aplikovali na anastomózu na tenkém střevě prasete domácího. Zvířata byla sledována po 3...

Národní úložiště šedé literatury : Nalezeno 16 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.