Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.01 vteřin. 
Perspectives in diamond thin film technology
Kromka, Alexander
Synthetic diamond thin films are routinely grown over world not only for basic research but also for industrial uses. At the Institute of Physics (IoP), diamond thin films are grown since 2002. The first installed deposition system is base on microwave plasma enhanced chemical vapor deposition (CVD) in hydrogen reach gas mixture (<2% methane diluted in hydrogen). This system is well suitable for fast growth of high quality diamond films up to 5 cm in diameter. The main advance of the system is cavity like resonator which allows running stable CVD process for several days at relatively high pressures (>200 mbar).
Structuring of diamond films by reactive ion plasma etching
Domonkos, M. ; Ižák, Tibor ; Proška, J. ; Kromka, Alexander
In this study, two common strategies of diamond film structuring are described. Main focus is on the comparison of top-down and the bottom-up strategies. The top-down strategy is primary related to dry reactive ion etching through masking materials (or even without mask), while bottom-up strategy is based on selective area deposition of diamond film. Several methods of both strategies are demonstrated in details in the article, regarding to their properties and basic principles.
Influence of methane concentration on diamond film morphology and growth rate
Ižák, Tibor ; Babchenko, Oleg ; Kromka, Alexander ; Potměšil, Jiří ; Hruška, Karel
In this study we investigated the influence of methane concentration on the diamond film growth. The experiments were carried out in focused microwave chemical vapour deposition system. The methane concentration was varied from 0.5% to 10 % of CH4 in H2 atmosphere. The final film morphology, chemical composition and growth rate were investigated by scanning electron microscopy (SEM), Raman spectroscopy and optical reflectance measurement. We observed, that increasing of CH4 concentration enhances the growth rate, but at the expense of the diamond film quality.
Influence of CO.sub.2./sub. concentration on diamond film morphology in pulsed linear antenna microwave plasma CVD system
Domonkos, M. ; Ižák, Tibor ; Babchenko, Oleg ; Kromka, Alexander ; Hruška, Karel
The diamond films were deposited in a pulsed linear antenna microwave plasma system. The influence of CO2 addition into the standard CH4/H2 gas mixture on the diamond film morphology was investigated. The concentration of CO2 varied from 0% up to 80% in CO2/CH4/H2 gas mixture. The film morphology, the growth rate and the ratio of sp3/sp2 carbon bonds were investigated. It was found that increasing of CO2 concentration resulted in enhanced growth rate (from 20 up to 36 nm/h). However, at very high CO2 concentrations (>40%) dominates etching instead of growth process. Moreover, we found that increasing of CO2 enhances the diamond film quality.
Characteristics of nanocrystalline diamond SGFETs under cell culture conditions
Krátká, Marie ; Kromka, Alexander ; Rezek, Bohuslav ; Brož, A. ; Kalbáčová, M.
Characterization of electronic properties of protein diamond interface by using microscopic (20 μm) solution-gated field-effect transistors (SGFET) based on H-terminated nanocrystalline diamond films (NCD) on glass. We show that NCD films with grain sizes down to 80 nm and thickness down to 100 nm are operational as SGFETs.
Pulsed linear antenna microwave plasma – a step ahead in large area material depositions and surface functionalization
Kromka, Alexander ; Babchenko, Oleg ; Ižák, Tibor ; Potocký, Štěpán ; Davydova, Marina ; Neykova, Neda ; Kozak, Halyna ; Remeš, Zdeněk ; Hruška, Karel ; Rezek, Bohuslav
A technological progress in the large area growth of diamond films and carbon nanotubes by the modified linear antenna MW system is presented. We show a correlation between process parameters and nano- or poly-crystalline film character. A challenging part, diamond coated mirrors or ATR prisms, are shown as multifunctional optical elements suitable for detection of absorbed molecules. Additional positive feature of the presented plasma system is low temperature hydrogen functionalization of diamond films. Finally, we present that combination of pulsed MW plasma with radiofrequency substrate biasing results in growth of oriented CNTs over large area.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.