Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Missing bright red giants in the Galactic center: A fingerprint of its once active state?
Zajaček, Michal ; Araudo, Anabella ; Karas, Vladimír ; Czerny, B. ; Eckart, A. ; Suková, Petra ; Štolc, Marcel ; Witzany, V.
We propose a novel scenario for the bright red-giant depletion based onthe collisions between red giants and the nuclear jet, which was likely active in the Galactic center a few million years ago and could have led to the formation of the large-scaleγ-ray Fermi bubbles. The process of the jet-induced ablation of red giants appears to be most efficient within∼0.04 pc(S-cluster), while at larger distances it was complemented by star–accretion disc collisions and at smaller scales, tidal stripping operated. These three mechanisms likely operated simultaneously and createdan apparent core of late-type stars within∼0.5 pc.
Polarization properties of bow shock sources close to the Galactic centre
Zajaček, M. ; Karas, Vladimír ; Hosseini, E. ; Eckart, A. ; Shahzamanian, B. ; Valencia-S, M. ; Peissker, F. ; Busch, G. ; Britzen, S. ; Zensus, J. A.
Several bow shock sources were detected and resolved in the innermost parsec from the supermassive black hole in the Galactic centre. They show several distinct characteristics, including an excess towards mid-infrared wavelengths and a significant linear polarization as well as a characteristic prolonged bow-shock shape. These features give hints about the presence of a non-spherical dusty envelope generated\nby the bow shock. The Dusty S-cluster Object (also denoted as G2) shows similar characteristics and it is a candidate for the closest bow shock with a detected proper motion in the vicinity of Sgr A*, with the pericentre distance of only approx. 2000 Schwarzschild radii. However, in the continuum emission it is a point-like source and hence we use Monte Carlo radiative transfer modeling to reveal its possible three-dimensional structure. Alongside the spectral energy distribution, the detection of polarized continuum emission in the near-infrared Ks-band (2.2 micrometers) puts additional constraints on the geometry of the source.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.