National Repository of Grey Literature 70 records found  beginprevious41 - 50nextend  jump to record: Search took 0.02 seconds. 
Influence of heat treatment on deformation behaviour of wrought Mg-Zn-based alloys
Olejňák, Juraj ; Drozdenko, Daria (advisor) ; Mathis, Kristián (referee)
Title: Influence of heat treatment on deformation behaviour of wrought Mg-Zn alloys Author: Juraj Olejňák Department: Department of Physics of Materials Supervisor: RNDr. Mgr. Daria Drozdenko, Ph.D. Abstract: The aim of the present thesis is to understand an influence of heat treatment on microstructure and mechanical properties of extruded Mg-Zn based alloys containing an addition of Ca and Nd. Microstructural analysis provided by electron microscopy gave us information about homogeneity and distribution of precipitates in investigated Mg alloys after extrusion and a subsequent heat treatment. Microhardness and compression test along the extrusion direction have been performed to determine optimal aging conditions for achieving better mechanical properties, such as hardness and strength. The acoustic emmision technique was used to follow active deformation mechanisms during plastic deformation. Application of the acquired knowledge in material research can contribute to design novel Mg alloys with enhanced mechanical properties for specific applications. Keywords: magnesium alloys, isothermal aging, precipitation, mechanical properties
Mechanical properties of pre-compressed Mg-Zn-Ca alloy
Hegedüs, Marius ; Dobroň, Patrik (advisor) ; Lukáč, Pavel (referee)
In wrought Mg alloys, their hexagonal closed packed structure together with a pronounced basal texture lead to anisotropy of mechanical properties. This bachelor thesis is focused on understanding the influence of previous deformation with further relaxation and/or additional heat treatment on deformation behaviour of the extruded Mg-Zn-Ca alloy. The significant influence of twins formed after pre-compression on mechanical properties was investigated. Evolution of microstructure, especially a formation of twins, is observed by light and scanning electron microscopy. The acoustic emission technique is used to determine active deformation mechanisms: dislocation slip and twinning. The results can be used for developing Mg alloys with enhanced properties.
Influence of fabrication and alloying on magnesium alloys
Jakl, Tomáš ; Remešová, Michaela (referee) ; Horynová, Miroslava (advisor)
This bachelor thesis compares mechanical properties of magnesium alloys in dependence on their composition and fabrication. The first part deals with a pure magnesium and its properties. The second part contains information about alloying elements and an overview of the fabrication methods. The third part consists of different magnesium alloys. The thesis contains photographs of microstructures, a review of mechanical properties and their comparison.
Study of novel magnesium alloys with controlled microstructure and texture
Drozdenko, Daria ; Dobroň, Patrik (advisor)
Title: Study of novel magnesium alloys with controlled microstructure and texture Author: Daria Drozdenko Department / Institute: Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague Supervisor of the doctoral thesis: Ing. Patrik Dobroň, Ph.D., Department of Physics of Materials. Abstract: The work elucidates the role of dislocation slip and twinning during plastic deformation in selected magnesium (Mg) alloys with controlled microstructure and texture. The acoustic emission (AE) technique was concurrently applied during deformation to determine the activity of particular deformation mechanisms. A detailed insight into microstructure was provided by electron microscopy. In order to obtain a comprehensive set of AE data for particular deformation mechanisms, Mg single crystals with various crystallographic orientations were channel-die and uniaxially compressed. The obtained results were applied on deformation mechanisms in polycrystalline textured Mg alloys. Particularly, the twinning - detwinning processes, in the sense of twin boundary mobility, during one cycle loading (pre-compression followed by tension) were described. Clear correlations between changes in the AE response and the inflection points on the deformation curve were found. An analysis of twin...
Investigation of basic deformation mechanisms of magnesium alloys by means of advanced in-situ methods and theoretical modeling
Čapek, Jan ; Mathis, Kristián (advisor) ; Landa, Michal (referee) ; Šiška, Filip (referee)
The work is focused on developing testing methods for investigating of the deformation mechanisms of magnesium alloys. The work involves the measurement of in-situ acoustic emission and neutron diffraction and comparison to the theoretical models. Mg + 1wt.% Zr alloy was selected for investigation of the compression - tension asymmetry. Advanced analysis of acoustic emission and neutron diffraction data revealed activation of different slip systems during deformation. Moreover, the different evolution of twinning was explained. The same methods were used to investigate the aluminum influence on deformation mechanisms. The hardening of basal slip and twinning and increasing importance of prismatic slip was observed.
Microstructure and thermal stability of ultra fine grained Mg-Zn-Y alloys
Vlasák, Tomáš ; Čížek, Jakub (advisor) ; Procházka, Ivan (referee)
The aim of this diploma thesis is to investigate microstructure and thermal stability of ultra fine grained magnesium alloys. The thesis first summarises methods using plastic deformation in order to achieve ultra fine grained structure that are used to process metals. Then experimental methods employed in the experimental part including microhardness testing, scanning electron microscopy and positron annihilation spectroscopy are described. Brief summary of previous research on MgZnY alloys strengthened by quasicrystalline phases and Mg22Gd alloys is given. Finally, results of experimental investigation of MgZnY alloys with various Zn/Y ratios and Mg22Gd alloy are discussed. These results suggest that presence of phases in MgZnY alloys depend on Zn/Y ratio, hardness of these alloys depends on Zn content and that rapid cooling of MgZnY alloys annealed at 500 řC lead to significant increase in volume fraction of quasicrystalline icosahedral phase. In the second section of the experimental part thermal behaviour of Mg22Gd alloy is investigated. Furthermore, formation of GdH2 particles in Mg22Gd is examined and attributed to reaction of hydrogen decomposed from water vapour with gadolinium in areas rich in gadolinium. Finally, significant hardening of Mg22Gd alloy processed by high pressure torsion has been...
Advanced Magnesium Alloys Surface Modification by Ni-P Based Coatings
Kosár, Petr ; Pacal, Bohumil (referee) ; Nový,, František (referee) ; Havlica, Jaromír (advisor)
The dissertation thesis deals with the modification of the surface of advanced magnesium alloys with Ni-P based coatings. At the beginning of the theoretical part, the structures of the used magnesium alloys and the influence of individual alloying elements on their properties are characterized. In the following part of the thesis the current knowledge in the field of electroless deposition on metal substrates is summarized. The theoretical part of the thesis is closed with contemporary research study in the field of clarification and determination of possible mechanism of electroless deposition. For the subsequent investigation of the mechanism of electroless deposition on magnesium alloys, it was necessary to characterize the microstructure and composition of individual magnesium alloys in the first phase of the experimental part. The exact composition of elements was determined using glow discharge optical emission spectroscopy and scanning electron microscopy with EDS was used for composition of phases of magnesium alloys. Using scanning electron microscopy and detailed elemental analysis of the coated magnesium substrate, it was found that for optimal Ni-P coating deposition on magnesium alloys, acid pickling prior coating is required in a mixture of acetic acid and sodium nitrate. Using the XPS method, it was found that the phosphorus atom in the sodium dihydride-diphosphate reducing agent has a + V charge. 4 At the end of the experimental part scanning electron microscopy and detailed elemental analyses were used for monitoring of the Ni-P particles nucleation and growth in the first 120 seconds of the coating process.
Superplastic deformation of ultrafine-grained magnesium alloys with potential for use in medicine
Vávra, Tomáš ; Minárik, Peter (advisor) ; Málek, Přemysl (referee)
Mechanical properties of ultra-fine grain magnesium alloys AE42 and LAE442 prepared by ECAP were investigated. The study was focused on finding suitable conditions for the superplastic deformation. In the first place, the thermal stability of the microstructure was investigated. Afterwards, the strain rate sensitivity was measured in the temperature range 180-240 řC and the strain rate of =5·10-5 -2·10-3 s-1 . Conditions for tensile tests of =10-4 s-1 at 180 ř C and =10-3 s-1 at 240 řC ware selected. Finally, the microstructure change as a result of deformation was observed by AFM and EBSD. The results were discussed with mechanical tests. The best superplastic properties were observed in LAE442 alloy deformed at 180 ř C and =10-4 s-1 . Under these conditions, the achieved tensile strain was 395%.
Study of novel magnesium alloys with controlled microstructure and texture
Drozdenko, Daria ; Dobroň, Patrik (advisor) ; Sklenička, Václav (referee) ; Vinogradov, Alexei (referee)
Title: Study of novel magnesium alloys with controlled microstructure and texture Author: Daria Drozdenko Department / Institute: Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague Supervisor of the doctoral thesis: Ing. Patrik Dobroň, Ph.D., Department of Physics of Materials. Abstract: The work elucidates the role of dislocation slip and twinning during plastic deformation in selected magnesium (Mg) alloys with controlled microstructure and texture. The acoustic emission (AE) technique was concurrently applied during deformation to determine the activity of particular deformation mechanisms. A detailed insight into microstructure was provided by electron microscopy. In order to obtain a comprehensive set of AE data for particular deformation mechanisms, Mg single crystals with various crystallographic orientations were channel-die and uniaxially compressed. The obtained results were applied on deformation mechanisms in polycrystalline textured Mg alloys. Particularly, the twinning - detwinning processes, in the sense of twin boundary mobility, during one cycle loading (pre-compression followed by tension) were described. Clear correlations between changes in the AE response and the inflection points on the deformation curve were found. An analysis of twin...
Mechanical properties of ultrafine-grained magnesium alloys
Nováková, Helena ; Stráská, Jitka (advisor) ; Král, Robert (referee)
This work is focused on the mechanical properties of ultrafine-grained magnesium alloy AZ31 prepared by EX-ECAP method. The main goal of the bachelor thesis is to find external conditions of superplastic deformation: deformation temperature (measured in the range 150 řC - 350 řC) and strain rate (measured in the range 10-5 s-1 - 10-2 s-1 ). Properties related to the mechanisms of superplasticity (strain rate sensitivity parameter, maximum stress and maximum elongation) were evaluated. Deformation mechanisms were furthermore observed using atomic force microscopy.

National Repository of Grey Literature : 70 records found   beginprevious41 - 50nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.