National Repository of Grey Literature 23 records found  previous4 - 13next  jump to record: Search took 0.02 seconds. 
Waste materials utilization for preparing hydrolysates for the fermentation phase.
Vadovičová, Natália ; Hrstka, Miroslav (referee) ; Babák, Libor (advisor)
Bachelor thesis focuses on the study and comparison of different types of hydrolysis, their optimization and maximization of yields for the upcoming fermentation. Orange peel was chosen as a substrate to conduct the experiments. First, the substrate was mechanically grinded to form a suspension. Each suspension then underwent one out of the examined methods of hydrolysis. Chosen methods were physical, such as microwaves, increased temperature or ultrasound, and chemical acidic and alkaline. Combinations of both types were also examined. The last optimized method was enzymatic hydrolysis. First set of experiments was conducted using enzymes Novozymes® NS50013 and NS50010. Production of cellulase and pectinase enzymes by A. niger during solid-state fermentation that lasted 10 days was also studied. The yields of reducing sugars of all the experiments were calculated using the Somogyi-Nelson method. Enzymatic hydrolysis was proven to be the most effective using the combination of both of the enzymes for a period of 96 hours at pH = 4.5 and temperature 45 °C. Yield of the reducing sugars under these conditions reached 27,4241 ± 0,0007 gl-1.
Biotechnological production of polyhydroxyalkanoates using wastes of coffee production
Vašíčková, Monika ; Benešová, Pavla (referee) ; Obruča, Stanislav (advisor)
This bachelor thesis is focused on study of production of polyhydroxyalkanoates (PHA) by bacteria Burkholderia cepacia and Burkholderia sacchari. Production of PHA has been studied using spent coffee grounds hydrolysates which have been prepared by different aproaches. In the thesis is compared standard method of coffee ground hydrolysis by mineral acid followed by enzymatic hydrolysis. Hydrolysates which have been produced were analyzed in terms of concentration of saccharides and efficiency of hydrolysis. The best producer of PHA (based on results) was bacterium Burkholderia cepacia, in the medium which has been prepared by hydrolysis of spent coffee grounds extracted by 60% solution of ethanol. Biomass yield of this cultivation was 3,553 g/l with 32,472% PHA content. This PHA contained 6,09% 3-hydroxyvalerate. In the other experiment, we verified alternative hydrolysis of spent coffee grounds – by commercially available enzymes. We used cellulase, hemicellulase and the enzymatic cocktail which has been produced by mould. Hemicellulase was the most effective hydrolytic enzyme and its application resulted in production of the highest amount of biomass – 5,708 g/l. In this cultivation, only homopolymer PHB has been which is probably caused by the fact, that during the enzymatic hydrolysis levulinic acid or any other potential precursor of 3HV is formed.
Production of liquid biofuels by using enzymatic hydrolysis of waste paper
Roštek, Martin ; Jecha, David (referee) ; Brummer, Vladimír (advisor)
This bachelor thesis focuses on the retrieval summary of current knowledge about the process of enzymatic hydrolysis with utilization of waste paper as raw material, in order to convert it into liquid biofuels. The thesis summarizes the general knowledge of the lignocellulosic a raw materials and their resources, an overview of available hydrolysis methods for materials and fermentation technologies, and also summary of methods currently used to rise enzymatic hydrolysis process effectivity. The next section provides an overview of commercial plants which use enzymatic hydrolysis of lignocellulosic materials.
Enzymatic hydrolysis of waste cardboard using the SSF method - a source of raw materials for the production of liquid biofuels.
Hlaváček, Viliam ; Stloukal, Radek (referee) ; Gabriel, Petr (advisor)
This master’s thesis discusses the useof enzymatic hydrolysis process of waste cardboard using simultaneous saccharification and fermentation (SSF) as a source of raw materials for production of liquid biofuels. This thesis is based on theses written by Ing. Brummer and Ing.Lepař.Thus, results gained in these works have been used and also further developed. The theoretical part summarizes the reasons for further development of SSF method and discusses, as well, the achievements reached in the processing of lignocellulosic waste materials by the SSF method so far.This section also discusses the general characteristics of lignocellulosic materials and also of the cellulolytic enzymes. It focusses also on individual pretreatment methods of lignocellulosic material and options of increasing the yield of the whole process. The experimental part verifies the particular results reached in previous theses and at the same time a further optimization of the method has been carried out because of the transfer of the whole process into a fermenter. Cardboard was set as the substrate for the experiments as it was evaluated by Ing. Brummer as the best one for enzymatic hydrolysis which was carried out by enzymes from Novozymes®. Parameters such as temperature, pH and kind of used buffer, the loading concentration of substrate and enzymes, were set according to the thesis of Ing. Lepař, which was aimed to their optimization. The SSF process done in fermenter of 2.0 l volume confirmed the previous results and furthermore it has been more effective through optimization of the added inoculum volume. It has been confirmed that the best substrate is cardboard finely grinded by vibrating mill. Also experiments with added nutrients had been done as an effort to increase the ethanol concentration, but these haven’t resulted insatisfying results. The maximal concentration of ethanol was 23,49 g/l, which was achieved after further optimization of various conditions. This result equals to experimental yield of 84,79 %.
Study of growth and optimization of selected metabolites production by Zymomonas mobilis
Lukačková, Adéla ; Vránová, Dana (referee) ; Babák, Libor (advisor)
In the diploma thesis are discussed the process of enzymatic hydrolysis of waste paper as a source for the production of bioethanol by bacteria Zymomonas mobilis. In the theoretical part summarize basic information about particular methods of hydrolysis, about paper used as a raw material for enzymatic hydrolysis, about possibilities of the fermentative production of bioethanol focusing on the method of simultaneous saccharification and fermentation comparison with enzymatic hydrolysis and fermentation. Suitable microorganisms for ethanolic fermentation and simultaneous saccharification and fermentation and their advantages and disadvantages, are further discussed in this part as well. The theoretical part ends with the suggestion of the technological process for production of bioetanol. It covers all necessary steps from the input of raw material to the separation of produced ethanol. In the experimental part various parameters of hydrolysis, fermentation and simultaneous saccharification and fermentation were optimized using enzymes from Novozymes® company and the Zymomonas mobilis CCM2770 and Zymomonas mobilis LMG457 bacterium. The conversion rate of paper cellulose to gluckose and production of ethanol were observed by HPLC/RI method. Type of buffer, quantity of cells, enzyme and substrate were optimized in order to maximize the efficiency of the process. All experiments were performed on paper containing high amount of cellulose and for comparison on standard medium which contains gluckose. The highest yields was achieved with the use of Novozymes® Cellulosic ethanol enzyme Kit. The strain Zymomonas mobilis LMG457 has demonstrated as a better producer.
Use of technical hemp extracts in hair cosmetics
Benková, Sarah ; Holub, Jiří (referee) ; Márová, Ivana (advisor)
Technical hemp as a versatile plant has found applications in many sectors of the industry. In cosmetics, it is mainly used for bioactive substances as well as proteins. The subject of this bachelor thesis was the preparation and characterization of a fraction containing hydrolysed hemp proteins and its use in hair cosmetics. In the theoretical part, the characteristics of the plant as well as its chemical composition are processed. Attention is paid especially to hemp proteins, their hydrolysis possibilities, and the subsequent use of hydrolysates in hair cosmetics. Within the experimental part, the preparation of hemp protein hydrolysates from hempseed cake of the Santhica 70 variety was optimized using the industrial enzymes TS-E 1930 and TS-E 1993 and the subsequent determination of the protein content and profile of prepared hydrolysates. The carbohydrate, chlorophyll, phenolic and flavonoid content of the analysed hydrolysates was also determined. A hair conditioner was prepared from the selected hydrolysate and tested by ten respondents. Thanks to the prepared conditioner, hair cosmetics with the addition of hydrolysed hemp proteins has been shown to enhance shine and pliability of the hair, as well as help the healing of frayed ends.
Selective Enzymatic Hydrolysis of Triglycerides in Supercritical Carbon Dioxide in Continuous-Flow Packed-Bed Reactor.
Pleskač, Ondřej
This research aims to study compositional changes in the product of blackcurrant (Ribes nigrum) seed oil hydrolysis in sc-CO2 concerning\nthe ratio of 𝜔-3 and 𝜔-6 fatty acids. The blackcurrant seed oil was chosen as a model substrate for its balanced fatty acid profile.
Plný tet: Download fulltextPDF
Analysis of phospholipids by comprehensive gas chromatography
Šilhavecká, Simona ; Čabala, Radomír (advisor) ; Jelínek, Ivan (referee)
Phospholipids are an important group of polar lipids constituting the main component of cell membranes. Their proportion may vary depending on many factors of the surrounding environment in which the cell is located. Determination of membrane phospholipids is essential in many scientific, industrial and economic sectors. The aim of this work has been to develop a separation method for determination of membrane phospholipids by which it was possible to analyze phosphorylated parts of phospholipids and fatty acids from one sample. Comprehensive gas chromatography with mass detection (GC×GC-MS) was chosen for the assay. This method allows the separation of the entire sample on two serially connected different columns, among which is the interface called modulator. The preparation of the sample includes a cleavage of the phospholipid molecule by the enzyme phospholipase C, which released the phosphorylated polar headgroups. These polar parts had to be derivatized before analysis. The principle of the chosen derivatization consisted in the use of two different silylation agents (hexamethyldisilazane and N,O-Bis(trimethylsilyl) trifluoracetamide) in two steps. Conditions were selected for efficient separation of the silylderivatives of phosphorylated headgroups using GC×GC-MS using a cryogenic...
Waste materials utilization for preparing hydrolysates for the fermentation phase.
Vadovičová, Natália ; Hrstka, Miroslav (referee) ; Babák, Libor (advisor)
Bachelor thesis focuses on the study and comparison of different types of hydrolysis, their optimization and maximization of yields for the upcoming fermentation. Orange peel was chosen as a substrate to conduct the experiments. First, the substrate was mechanically grinded to form a suspension. Each suspension then underwent one out of the examined methods of hydrolysis. Chosen methods were physical, such as microwaves, increased temperature or ultrasound, and chemical acidic and alkaline. Combinations of both types were also examined. The last optimized method was enzymatic hydrolysis. First set of experiments was conducted using enzymes Novozymes® NS50013 and NS50010. Production of cellulase and pectinase enzymes by A. niger during solid-state fermentation that lasted 10 days was also studied. The yields of reducing sugars of all the experiments were calculated using the Somogyi-Nelson method. Enzymatic hydrolysis was proven to be the most effective using the combination of both of the enzymes for a period of 96 hours at pH = 4.5 and temperature 45 °C. Yield of the reducing sugars under these conditions reached 27,4241 ± 0,0007 gl-1.
Enzymatic hydrolysis of waste cardboard using the SSF method - a source of raw materials for the production of liquid biofuels.
Hlaváček, Viliam ; Stloukal, Radek (referee) ; Gabriel, Petr (advisor)
This master’s thesis discusses the useof enzymatic hydrolysis process of waste cardboard using simultaneous saccharification and fermentation (SSF) as a source of raw materials for production of liquid biofuels. This thesis is based on theses written by Ing. Brummer and Ing.Lepař.Thus, results gained in these works have been used and also further developed. The theoretical part summarizes the reasons for further development of SSF method and discusses, as well, the achievements reached in the processing of lignocellulosic waste materials by the SSF method so far.This section also discusses the general characteristics of lignocellulosic materials and also of the cellulolytic enzymes. It focusses also on individual pretreatment methods of lignocellulosic material and options of increasing the yield of the whole process. The experimental part verifies the particular results reached in previous theses and at the same time a further optimization of the method has been carried out because of the transfer of the whole process into a fermenter. Cardboard was set as the substrate for the experiments as it was evaluated by Ing. Brummer as the best one for enzymatic hydrolysis which was carried out by enzymes from Novozymes®. Parameters such as temperature, pH and kind of used buffer, the loading concentration of substrate and enzymes, were set according to the thesis of Ing. Lepař, which was aimed to their optimization. The SSF process done in fermenter of 2.0 l volume confirmed the previous results and furthermore it has been more effective through optimization of the added inoculum volume. It has been confirmed that the best substrate is cardboard finely grinded by vibrating mill. Also experiments with added nutrients had been done as an effort to increase the ethanol concentration, but these haven’t resulted insatisfying results. The maximal concentration of ethanol was 23,49 g/l, which was achieved after further optimization of various conditions. This result equals to experimental yield of 84,79 %.

National Repository of Grey Literature : 23 records found   previous4 - 13next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.