Národní úložiště šedé literatury Nalezeno 11 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Wake Behind a Cylinder: An Overview of Spatio-Temporal Aspects
Uruba, Václav
A circular cylinder in crossflow is subjected to the overview study from the point of view spatial and temporal characteristics. It represents itself a typical engineering problem, appearing in practice frequently in various forms. In fluid mechanics, this case is considered to be a typical canonical case, with relatively simple and straightforward definition, but complex and dynamical flow topology. The typical dynamics is characterized by quasi-periodic behavior called von Kármán – Bénard vortex street with a typical frequency expressed in dimensionless number called Strouhal number. The wake flow structure is considered to be characterized by a single frequency and 2D topology, homogeneous along the cylinder axis, very often. The presented paper concentrates on differences between this commonly accepted model and physical reality. Both temporal and spatial aspects of the flow in the wake behind a cylinder are to be addressed. The turbulent subcritical wake characterized by Reynolds number about 5 thousand will be considered, as this situation is a typical case in mechanical engineering applications.
Localized formulation of bipenalty method in contact-impact problems
Kolman, Radek ; González, J. A. ; Dvořák, Radim ; Kopačka, Ján ; Park, K.C.
Often, the finite element method together with direct time integration is used for modelling of contact-impact problems of bodies. For direct time integration, the implicit or explicit time stepping are gen-\nerally employed. It is well known that the time step size in explicit time integration is limited by the stability limit. Further, the trouble comes with the task of impact of bodies with different critical time step sizes for each body in contact. In this case, this numerical strategy based on explicit time stepping with the same time step size for both bodies is not effective and is not accurate due to the dispersion behaviour and spurious stress oscillations. For that reason, a numerical methodology, which allows independent time stepping for each body with its time step size, is needed to develop. In this paper, we introduce the localized variant of the bipenalty method in contact-impact problems with the governing equations derived based on the Hamilton’s principle. The localized bipenalty method is applied into the impact problems of bars as an one-dimensional problem. The definition of localized gaps is presented and applied into the full concept of the localized bipenalty method.
Effect of oscillating blade on tonal noise of blade cascade with five NACA 0010 profiles
Šnábl, Pavel ; Pešek, Luděk ; Radolf, Vojtěch ; Antoš, Pavel ; Procházka, Pavel P. ; Prasad, Chandra Shekhar
The airfoil tonal noise is a well known phenomenon which appears on single airfoils in moderate Reynolds numbers at low angles of attack. It can appear on small aircrafts, fans, wind turbines etc. In thispaper, it was observed on a blade cascade consisting of five NACA 0010 profiles placed in a closed rectangular channel with hard walls when for given conditions, i.e. flow velocity and angle of attack, the cascade tunes to one single frequency. During the middle blade oscillation, the single tone splits up to several tones with lower intensity modulated by the excitation frequency. Thus, the oscillation of one blade suppresses the tonal noise generation in the cascade.
Tomographic investigation of the sandstone fracture toughness
Vavřík, Daniel ; Beneš, Pavel ; Fíla, Tomáš ; Koudelka_ml., Petr ; Kumpová, Ivana ; Vavro, Martin
It is well known that the measured values of the fracture toughness of quasi brittle materials are influenced by material heterogeneity, dimensions, boundary conditions, and unequal tension and compression properties. Standard testing methods supposing isotropic material, in contrary the quasi-brittle materials differ from this theoretical expectation, therefore this approach may fail. The authors present Local Fracture Toughness Testing (LFTT) method to overcome this obstacle. LFFT based on a complex methodology using a series of tomographic reconstructions recorded during specimen loading is calculated independently of the outside boundary conditions.
Application of first integrals in the construction of the Lyapunov function for the random response stability testing
Náprstek, Jiří ; Fischer, Cyril
The paper deals with a possibility of using the properties of first integrals for the construction of Lyapunov function for the analysis of a dynamic system stability in the stochastic domain. It points out certain characteristics of first integrals resulting in the necessity to introduce additional constraints to assure the principal properties of the Lyapunov function. A number of these constraints has their physical interpretation with reference to system stability. The advantage of this method constructing the Lyapunov function consists in the fact that the Lyapunov function itself contains information on the examined system and, consequently, it is not merely a positive definite function without any relation to the actual case concerned. The presented theory finds application in many dynamical systems. The procedure is illustrated by a nonlinear SDOF example.
Theoretical analysis of selected trajectories inscribed by a ball freely rolling in a spherical cavity
Náprstek, Jiří ; Fischer, Cyril
Indirect monitoring of structures is significantly complicated when an artificial vibration absorber has to be taken into account. Knowledge of the absorber’s behaviour is necessary in order to correctly distinguish the response types obtained during an drive-by measurement. In this work, the mathematical model of the ball-type vibration absorber is used, which is based on the Lagrangian formalism. Three first integrals are identified when no external excitation nor damping is assumed. The paper illustrates the power of this approach, which enables a detailed analysis of free movement of the ball in the spherical cavity. Properties of several particular trajectories depending on initial conditions are presented.
Aerodynamic interference forces acting on two square prisms in a model atmospheric boundary layer
Macháček, Michael ; Lo, Y. L. ; Máca, J.
The presented experimental analysis focuses on the definition of interference factors for aerodynamic forces acting on two square prisms depending on their relative position. Both prisms used had the same dimensions and a height to width ratio of 6 - this ratio is relatively common in high-rise buildings. The experiment was performed in a wind tunnel with a model atmospheric boundary layer, which represented a dense urban area. The forces acting at the base of one of the buildings were measured, and by moving the other building it was possible to measure 204 mutual configurations, i.e., 204 interference positions. In all positions, the windward facades of the small-area model were placed perpendicular to the direction of the incoming flow. This created a detailed map of the interference effect on a wind-loaded pair of buildings. The results show a significant effect of the relative position of buildings on wind loads. A significant increase in\nload occurred due to the proximity of buildings. Due to the interference effect, wind load fluctuations can increase by up to 28% and average values by up to 36%.
Determination of aerodynamic coefficients for air flow around U-profiles with different flange porosities
Ledvinková, Blanka ; Hračov, Stanislav ; Macháček, Michael
Our contribution presents the comparison of the experimental investigations and of the numerical 2D simulations of the air flow around U –profiles having different flange porosities. The U-shaped beams were exposed to the air flow having a given velocity at different angles of the wind attack for obtaining the curves of the aerodynamic coefficients depending on the impact angle. The numerical simulations of the wind tunnel testing were performed using the Unsteady Reynolds Averaged Navier-Stokes (RANS) method, k-ω SST turbulence model was assumed.
Aeroelastic instability of differently porous U-profiles in crosswind direction
Hračov, Stanislav ; Macháček, Michael
Flow-induced vibrations of the flexibly mounted slender U-shaped beams allowed to oscillate in the crosswind direction only are studied experimentally in the wind tunnel. All beams are characterized by a cross section having a side ratio of along-wind to across-wind dimension equal to two. The effects of two depths of U profiles and two porosities of their flanges ( 0 % and 75 %) onto a loss of aeroelastic stability are investigated under the smooth flow conditions and for low Scruton numbers. The results indicate almost similar proneness of the non-porous beams to galloping-type oscillations to a rectangular prism with the same side ratio regardless their depth. The onset of across-wind galloping occurred in these cases at wind velocity very close to von-Kármán-vortex-resonance flow speed, even though the critical velocity predicted by the quasisteady theory is much lower. For porous and shallower U profile this asynchronous quenching also takes\nplace. However, the higher flange porosity reduces significantly not only the vortex-shedding effect, but also causes an increase in the onset galloping velocity above the critical speed determined for non-porous profiles. In the case of deeper U-shaped beam, the effect of higher porosity even suppresses the proneness to galloping
Innovative device for the simulation of environmental conditions and testing of building materials
Cacciotti, Riccardo ; Wolf, Benjamin ; Macháček, Michael ; Frankl, Jiří
Excessive humidity influences the performance of building envelopes and the safety of their occupants. Moisture related problems can indeed impose significant health risks for buildings’ users and even lead, under extreme scenarios, to structural failures. This paper investigates an innovative experimental setup for evaluating the influence of changing environmental conditions on the performance of building materials. It stems out from a broader ongoing research aimed at studying the trends of mould growth on wooden building components. The presented results include the design, construction and numerical validation of a small-scale climatic wind tunnel (2m x 1.8m ca.) to be used for the simulation of natural ventilation and daily humidity and temperature fluctuations. Key findings include the final design of a low cost, modular construction which allows gathering reliable data on the response of building materials exposed to changing boundary conditions, intended for improving current mould growth models. Future work is also suggested.

Národní úložiště šedé literatury : Nalezeno 11 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.