Národní úložiště šedé literatury Nalezeno 8 záznamů.  Hledání trvalo 0.00 vteřin. 
Modely aritmetických a bohatých teorií
Glivický, Petr ; Mlček, Josef (vedoucí práce) ; Vopěnka, Petr (oponent)
V předložené práci formulujeme problematiku oboru peanovských součinů (na daném modelu Presburgerovy aritmetiky (Pr)) jakožto potenciálně možného základu pro konstrukci modelů Peanovy aritmetiky (PA). Tato problematika je speciálním případem fenoménu prezentace, který úzce souvisí s pojmem bohaté teorie. Dále se zabýváme jednou ze základních otázek o oboru peanovských součinů, totiž problémem, zda na daném modelu M |= Pr mohou existovat dva peanovské součiny (· , ) shodující se na nějakém slicu a M: (x)(a·x = ax) a přitom různé pod a: (c, d < a)(c·d 6=c d). Tento problém převedeme na otázku, zda eliminační množina lineární aritmetiky (LA) je podmnožinou množiny existenčních formulí. Úplnou odpověď na tuto otázku v práci nepodáme, dokážeme pouze, že formule tvaru (x)(z1, z2) , kde je konjunkce rovností termů, je ekvivalentní s existenční. Naznačíme, že otázka eliminace v LA je podstatně těžší než v Pr či v teorii modulů a ukážeme, že souvisí s problémem popisu konečně generovaných podmonoidů Z. Přitom zavedeme pojmy (regulární množina, standardní racionalita, zubatice, . . .) a metody, které, jak věříme, budou podstatné pro případné budoucí rozřešení tohoto problému.
Study of Arithmetical Structures and Theories with Regard to Representative and Descriptive Analysis
Glivický, Petr ; Mlček, Josef (vedoucí práce) ; Vopěnka, Petr (oponent) ; Zlatoš, Pavol (oponent)
disertační práce Studium aritmetických struktur a teorií s ohledem na reprezentační a deskriptivní analýzu Petr Glivický Jsme motivováni otázkou vztahu lokálních a globálních vlastností operace o ve struktuře tvaru B, o s ohledem na aplikaci pro studium modelů B, · Peanovy aritmetiky, kde B je model aritmetiky Presburgerovy. Zajímá nás zejména problém závislosti, který formulujeme jako otázku určení uzávěru závislosti iclO (E) = {d ∈ Bn ; (∀o, o ∈ O)(o E = o E ⇒ o(d) = o (d))}, kde B je struktura, O množina n-árních operací na B a E ⊆ Bn. Ukážeme, že tento problém lze převést na otázku definovatelnosti v jisté expanzi B. Speciálně, je-li B saturovaný model Presburgerovy aritmetiky a O množina všech (saturovaných) peanovských součinů na B, dokážeme, že pro a ∈ B je iclO ({a} × B) nejmenší možný, tj. obsahující právě ty dvojice (d0, d1) ∈ B2, kde jedno z di je tvaru p(a) pro nějaký polynom p ∈ Q[x]. Uvedená problematika úzce souvisí s deskriptivní analýzou lineárních teorií, což jsou (až na změnu jazyka) teorie jistých diskrétně uspořádaných modulů nad určitými diskrétně uspořádanými obory integrity. Dokážeme tvrzení o eliminaci kvantifikátorů v lineárních teoriích a nalezneme prvomodely jejich...
Modely aritmetických a bohatých teorií
Glivický, Petr ; Vopěnka, Petr (oponent) ; Mlček, Josef (vedoucí práce)
V předložené práci formulujeme problematiku oboru peanovských součinů (na daném modelu Presburgerovy aritmetiky (Pr)) jakožto potenciálně možného základu pro konstrukci modelů Peanovy aritmetiky (PA). Tato problematika je speciálním případem fenoménu prezentace, který úzce souvisí s pojmem bohaté teorie. Dále se zabýváme jednou ze základních otázek o oboru peanovských součinů, totiž problémem, zda na daném modelu M |= Pr mohou existovat dva peanovské součiny (· , ) shodující se na nějakém slicu a M: (x)(a·x = ax) a přitom různé pod a: (c, d < a)(c·d 6=c d). Tento problém převedeme na otázku, zda eliminační množina lineární aritmetiky (LA) je podmnožinou množiny existenčních formulí. Úplnou odpověď na tuto otázku v práci nepodáme, dokážeme pouze, že formule tvaru (x)(z1, z2) , kde je konjunkce rovností termů, je ekvivalentní s existenční. Naznačíme, že otázka eliminace v LA je podstatně těžší než v Pr či v teorii modulů a ukážeme, že souvisí s problémem popisu konečně generovaných podmonoidů Z. Přitom zavedeme pojmy (regulární množina, standardní racionalita, zubatice, . . .) a metody, které, jak věříme, budou podstatné pro případné budoucí rozřešení tohoto problému.
Srovnání ontogenetického a fylogenetického vývoje porozumění jevu nekonečno v geometrickém kontextu
Krátká, Magdalena ; Vopěnka, Petr (vedoucí práce) ; Novotná, Jarmila (oponent) ; Potůček, Jiří (oponent)
Nekonečno, ať to matematické, filozofické nebo teologické, fascinovalo a fascinuje lidstvo od počátků utváření vědeckého myšlení dodnes. Mnoho matematiků se nechalo omámit slastným pocitem toho, kdo rozřešil záhadu, když filozofovali nad problémy založenými na nekonečnu. Stejný pocit mohou zažít dnešní studenti, když znovu objevují překvapivé vlastnosti nekonečného. Podobné pocity jsem měla při studiu matematické analýzy, teorie množin nebo Zénónových aporií i já. Asi právě proto jsem se rozhodla zabývat se ve své disertační práci nekonečnem. Protože mám i zálibu v historii matematiky a měla jsem to štěstí pracovat pod vedením profesora Petra Vopěnky, bylo nasnadě zaměřit práci právě na srovnání ontogenetického a fylogenetického vývoje porozumění nekonečnu. Práce je rozdělena do 5 kapitol. V elektronické verzi je navíc doplněna o rejstřík pojmů. V první kapitole představuji argumenty pro i proti srovnávání fylogenetického a ontogenetického kognitivního vývoje. Druhá kapitola je exkurzem do historie matematiky se zaměřením na nekonečno, speciálně na výklady bodu, přímky a kontinua a jevů s tím souvisejících. Obsahuje postřehy o pojetí nekonečna od dob antické matematiky až po Cantorovu teorii množin. Tato kapitola mi jednak umožňuje vytypovat hlavní zdroje epistemologických překážek a dále konstruovat...

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.