Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.01 vteřin. 
Properties of function spaces and operators acting on them
Turčinová, Hana ; Nekvinda, Aleš (vedoucí práce) ; Edmunds, David Eric (oponent) ; Sickel, Winfried (oponent)
Tato disertační práce je věnována studiu vlastností prostorů funkcí a operátorů na nich. Práce sestává ze čtyř vědeckých článků. V prvním článku uvádíme novou charakterizaci množiny Sobolevových funkcí s nulovou stopou pomocí funkce vzdálenosti od hranice oblasti. Tato charakteri- zace nově využívá prostor L1,∞ a , který obsahuje funkce z prostoru L1,∞ s absolutně spojitou kvazinormou. Ve druhém článku zkoumáme vlastnosti jisté nové škály prostorů, které jsou definovány pomocí funkcionálu založeného na maximálním nerostoucím přerovná- ní a mocninách. Motivace pro studium těchto struktur pochází z nedávného výzkumu optimálních Sobolevových vnoření do prostorů s Ahlforsovou mírou. Ve třetím článku rozšiřujeme existující diskretizační metodu pro Lorentzovy normy tak, aby ji bylo možno uplatnit i pro degenerované váhy. Pomocí této nové techniky charakterizujeme obecné vnoření mezi klasickými Lorentzovými prostory. Ve čtvrtém článku charakterizujeme trojice vah, pro které platí nerovnosti ob- sahující superpozici dvou integrálních operátorů. Aplikace výsledků třetího článku nám dovolí vynechat techniky založené na dualitě, a získat tím obecnější výsledek. 1
Characterization of functions with zero traces via the distance function
Turčinová, Hana ; Nekvinda, Aleš (vedoucí práce) ; Edmunds, David Eric (oponent)
Necht' Ω ⊂ RN je oblast s lipschitzovskou hranicí, d(x) = dist(x, ∂Ω) je funkce vzdálenosti od hranice Ω a p ∈ (1, ∞). Známá charakterizace prostoru funkcí s nu- lovou stopou říká, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ Lp (Ω) a zároveň ∇u ∈ Lp (Ω). Tento výsledek byl v poslední době několikrát vylepšen v tom smyslu, že podmínka u/d ∈ Lp (Ω) byla postupně zeslabována. Bylo dokázáno, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ L1 (Ω) a zároveň ∇u ∈ Lp (Ω). Zatím nejlepší výsledek v tomto směru lze nalézt v autorčině bakalářské práci, kde je dokázáno, že podmínku u/d ∈ Lp (Ω) je možné zeslabit až na u/d ∈ L1,p (Ω), ovšem pouze v případě, kdy N = 1. V této diplomové práci dokážeme, že pro libovolnou dimenzi N ≥ 1, a každá p ∈ (1, ∞) a q ∈ [1, ∞) platí u ∈ W1,p 0 (Ω) právě tehdy, když u/d ∈ L1,q (Ω) a ∇u ∈ Lp (Ω). Na závěr pomocí protipříkladu ukážeme, že naši podmínku není možné nahradit podmínkou u/d ∈ L1,∞ (Ω). 1
Characterization of functions with zero traces via the distance function
Turčinová, Hana ; Nekvinda, Aleš (vedoucí práce)
Necht' Ω ⊂ RN je oblast s lipschitzovskou hranicí, d(x) = dist(x, ∂Ω) je funkce vzdálenosti od hranice Ω a p ∈ (1, ∞). Známá charakterizace prostoru funkcí s nu- lovou stopou říká, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ Lp (Ω) a zároveň ∇u ∈ Lp (Ω). Tento výsledek byl v poslední době několikrát vylepšen v tom smyslu, že podmínka u/d ∈ Lp (Ω) byla postupně zeslabována. Bylo dokázáno, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ L1 (Ω) a zároveň ∇u ∈ Lp (Ω). Zatím nejlepší výsledek v tomto směru lze nalézt v autorčině bakalářské práci, kde je dokázáno, že podmínku u/d ∈ Lp (Ω) je možné zeslabit až na u/d ∈ L1,p (Ω), ovšem pouze v případě, kdy N = 1. V této diplomové práci dokážeme, že pro libovolnou dimenzi N ≥ 1, a každá p ∈ (1, ∞) a q ∈ [1, ∞) platí u ∈ W1,p 0 (Ω) právě tehdy, když u/d ∈ L1,q (Ω) a ∇u ∈ Lp (Ω). Na závěr pomocí protipříkladu ukážeme, že naši podmínku není možné nahradit podmínkou u/d ∈ L1,∞ (Ω). 1
Characterization of functions with zero traces via the distance function
Turčinová, Hana ; Nekvinda, Aleš (vedoucí práce) ; Edmunds, David Eric (oponent)
Necht' Ω ⊂ RN je oblast s lipschitzovskou hranicí, d(x) = dist(x, ∂Ω) je funkce vzdálenosti od hranice Ω a p ∈ (1, ∞). Známá charakterizace prostoru funkcí s nu- lovou stopou říká, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ Lp (Ω) a zároveň ∇u ∈ Lp (Ω). Tento výsledek byl v poslední době několikrát vylepšen v tom smyslu, že podmínka u/d ∈ Lp (Ω) byla postupně zeslabována. Bylo dokázáno, že u ∈ W1,p 0 (Ω) právě tehdy, když platí u/d ∈ L1 (Ω) a zároveň ∇u ∈ Lp (Ω). Zatím nejlepší výsledek v tomto směru lze nalézt v autorčině bakalářské práci, kde je dokázáno, že podmínku u/d ∈ Lp (Ω) je možné zeslabit až na u/d ∈ L1,p (Ω), ovšem pouze v případě, kdy N = 1. V této diplomové práci dokážeme, že pro libovolnou dimenzi N ≥ 1, a každá p ∈ (1, ∞) a q ∈ [1, ∞) platí u ∈ W1,p 0 (Ω) právě tehdy, když u/d ∈ L1,q (Ω) a ∇u ∈ Lp (Ω). Na závěr pomocí protipříkladu ukážeme, že naši podmínku není možné nahradit podmínkou u/d ∈ L1,∞ (Ω). 1
Characterization of functions vanishing at the boundary
Turčinová, Hana ; Nekvinda, Aleš (vedoucí práce) ; Edmunds, David Eric (oponent)
Nechť Ω ⊂ Rn je oblast s mírně regulární hranicí, p ∈ (1,∞) a nechť d je funkce vzdálenosti od hranice definovaná vztahem d(t) = dist(t,∂Ω), t ∈ Rn . Předpokládejme, že funkce u je prvkem Sobolevova prostoru W1,p (Ω). Klasický výsledek tvrdí, že pak u ∈ W1,p 0 (Ω) právě tehdy, když u d ∈ Lp (Ω) a ∇u ∈ Lp (Ω). Toto tvrzení bylo později několikrát vylepšeno oslabením podmínky u d ∈ Lp (Ω). První takový výsledek ukázal, že postačí u d ∈ Lp,∞ (Ω), později bylo dokázáno, že stačí pouze u d ∈ L1 (Ω). Tvrzení bylo navíc rozšířeno i pro Sobolevovy prostory vyšších řádů. V této práci dále vylepšíme předchozí výsledky v případě, kdy dimenze n = 1 a Ω je otevřený interval I. Náš hlavní výsledek ukazuje, že u ∈ W1,p 0 (I) právě tehdy, když u d ∈ L1,p (I) a u′ ∈ Lp (I). 1

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.