Žádný přesný výsledek pro Olhero,, Susana Maria Henriques nebyl nalezen, zkusme místo něj použít Olhero Susana Maria Henriques ...
Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.03 vteřin. 
Study of the synthesis and processing conditions on the structure and properties of (Ba,Ca)(Ti,Zr)O3 lead-free ceramics
Bijalwan, Vijay ; Liedermann, Karel (oponent) ; Olhero,, Susana Maria Henriques (oponent) ; Button, Timothy William (vedoucí práce)
The lead free piezoelectric ceramic is a current topic of interest to replace lead based ceramics due to the demand of environmental protection and health concerns. Different materials have been discovered so far, including (K, Na) NbO3 (KNN), (Bi, Na) TiO3 (BNT), (Bi, Na) TiO3 – BaTiO3 (BNT-BT) etc. However, their piezoelectric properties are not fully comparable to the lead based ceramics (e.g. Lead zirconate titanate ((Pb Zr)TiO3). To match the high functional properties of Pb-based materials, a new material system, (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 or (Ba, Ca) (Zr, Ti) O3 ((1-x)BZT-xBCT or BCZT) was recently found, which possess very high piezoelectric and dielectric properties. The drawback of this composition is its very high sintering temperature (1520°C) in order to achieve high piezoelectric properties (e.g. Piezoelectric constant d33 > 600 pC/N). In this work, based on BCZT system, ceramics with high functional properties were fabricated by addition/substitution of CeO2 while reducing its sintering temperature to 1350°C. The CeO2 addition (y = 0.07 wt.%) to (Ba0.85Ca0.15) (Zr0.1Ti0.9) O3 ceramic reduced its sintering temperature drastically and high densification was achieved at 1350°C, together with increased Curie Temperature, TC ~ 105°C, and controlled grain size ~ 10 - 13 m. The phase transition from rhombohedral to tetragonal (R-T) was identified between y = 0 - 0.1 wt.% by the X ray diffraction (XRD) which in line with the Raman spectra analysis. A detailed study of microstructural and structural characteristics is shown with its correlation to the dielectric, ferroelectric and piezoelectric properties. Best functional properties were observed for BCZT - y wt.% CeO2 ceramics where y=0.07 wt.%, in which piezoelectric constant d33 = 507±20pC/N, planar coupling coefficient kp = 51.8 %, dielectric permittivity r = 4091±100, tangent loss tan = 0.02, remenant polarization Pr = 13.58C/cm2, coercive field EC = 2.13kV/cm and normalized strain d33* or Smax/Emax = 840pm/V. The two step sintering (TSS) technique demonstrated a homogeneous grain growth and high density (~ 99% of theoretical density). (Ba0.85Ca0.15-y Cey) (Zr0.1Ti0.9) O3 (BCCeZT) lead free piezoelectric ceramics were also prepared where CeO2 was used as a substitution at A-site of BCZT’s lattice system. The shifting of XRD peaks towards higher angles suggests cell contraction and we speculate occupation of Ce ions at A site. It is found that ~ (10 - 12) m grain size is critical for the processing of high performance lead free BCCeZT ceramics. The best properties were obtained for y;Ce = 0.00135 sintered at 1350°C/4h having as d33 = 501±10 pC/N, kp = 38.5±1.92 %, Pr = 12.19 C/cm2, TC = 108.1 °C and strain (S) of 0.14 %. To investigate further the effects of A-site substitution, (Ba1-x-y Cax Cey) (Zr0.1 Ti0.9) O3 ceramics (x:Ca = 0.05, 0.10, 0.15, 0.20 and y;Ce = 0.00135) were fabricated. Again, when grain size was ~ 13um, high piezoelectric properties (d33 = 457pC/N) for x;Ca = 0.15 were observed when sintered at 1425 °C, while when grain size > 16 microns, d33 reduced below 200 pC/N. the XRD analysis shows the phase transition from orthorhombic to tetragonal as x;Ca content increases.
Study of the synthesis and processing conditions on the structure and properties of (Ba,Ca)(Ti,Zr)O3 lead-free ceramics
Bijalwan, Vijay ; Liedermann, Karel (oponent) ; Olhero,, Susana Maria Henriques (oponent) ; Button, Timothy William (vedoucí práce)
The lead free piezoelectric ceramic is a current topic of interest to replace lead based ceramics due to the demand of environmental protection and health concerns. Different materials have been discovered so far, including (K, Na) NbO3 (KNN), (Bi, Na) TiO3 (BNT), (Bi, Na) TiO3 – BaTiO3 (BNT-BT) etc. However, their piezoelectric properties are not fully comparable to the lead based ceramics (e.g. Lead zirconate titanate ((Pb Zr)TiO3). To match the high functional properties of Pb-based materials, a new material system, (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 or (Ba, Ca) (Zr, Ti) O3 ((1-x)BZT-xBCT or BCZT) was recently found, which possess very high piezoelectric and dielectric properties. The drawback of this composition is its very high sintering temperature (1520°C) in order to achieve high piezoelectric properties (e.g. Piezoelectric constant d33 > 600 pC/N). In this work, based on BCZT system, ceramics with high functional properties were fabricated by addition/substitution of CeO2 while reducing its sintering temperature to 1350°C. The CeO2 addition (y = 0.07 wt.%) to (Ba0.85Ca0.15) (Zr0.1Ti0.9) O3 ceramic reduced its sintering temperature drastically and high densification was achieved at 1350°C, together with increased Curie Temperature, TC ~ 105°C, and controlled grain size ~ 10 - 13 m. The phase transition from rhombohedral to tetragonal (R-T) was identified between y = 0 - 0.1 wt.% by the X ray diffraction (XRD) which in line with the Raman spectra analysis. A detailed study of microstructural and structural characteristics is shown with its correlation to the dielectric, ferroelectric and piezoelectric properties. Best functional properties were observed for BCZT - y wt.% CeO2 ceramics where y=0.07 wt.%, in which piezoelectric constant d33 = 507±20pC/N, planar coupling coefficient kp = 51.8 %, dielectric permittivity r = 4091±100, tangent loss tan = 0.02, remenant polarization Pr = 13.58C/cm2, coercive field EC = 2.13kV/cm and normalized strain d33* or Smax/Emax = 840pm/V. The two step sintering (TSS) technique demonstrated a homogeneous grain growth and high density (~ 99% of theoretical density). (Ba0.85Ca0.15-y Cey) (Zr0.1Ti0.9) O3 (BCCeZT) lead free piezoelectric ceramics were also prepared where CeO2 was used as a substitution at A-site of BCZT’s lattice system. The shifting of XRD peaks towards higher angles suggests cell contraction and we speculate occupation of Ce ions at A site. It is found that ~ (10 - 12) m grain size is critical for the processing of high performance lead free BCCeZT ceramics. The best properties were obtained for y;Ce = 0.00135 sintered at 1350°C/4h having as d33 = 501±10 pC/N, kp = 38.5±1.92 %, Pr = 12.19 C/cm2, TC = 108.1 °C and strain (S) of 0.14 %. To investigate further the effects of A-site substitution, (Ba1-x-y Cax Cey) (Zr0.1 Ti0.9) O3 ceramics (x:Ca = 0.05, 0.10, 0.15, 0.20 and y;Ce = 0.00135) were fabricated. Again, when grain size was ~ 13um, high piezoelectric properties (d33 = 457pC/N) for x;Ca = 0.15 were observed when sintered at 1425 °C, while when grain size > 16 microns, d33 reduced below 200 pC/N. the XRD analysis shows the phase transition from orthorhombic to tetragonal as x;Ca content increases.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.