Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.00 vteřin. 
Properties of weakly differentiable functions and mappings
Kleprlík, Luděk
V předložené práci studujeme optimální podmínky na homeomorfis- mus f : Ω → Rn , která nám zaručí, že složení u ◦ f je slabě diferenco- vatelné a slabá derivace patří do nějakého vhodného prostoru funkcí. Ukážeme, má-li f konečnou distorzi a q-distorze Kq = |Df|q /Jf je dostatečně integrovatelná, potom operátor složení Tf (u) = u ◦ f zo- brazuje funkce z W1,q loc do prostoru W1,p loc a navíc platí známé řetízkové pravidlo. Pro důkaz tohoto tvrzení budeme muset nejdříve zjistit, kdy inverzní zobrazení f−1 zobrazuje množiny nulové míry na množiny nulové míry (tj. splňuje Luzinovu (N−1 ) podmínku). Ukážeme op- timální podmínky pro Sobolev-Lorentzův prostor WLn,q a pro Sobolev Orliczův prostor WLq log L, kde q ≥ n a α > 0 nebo 1 < q ≤ n a α < 0. Nalezneme také nutnou podmínku na homeomorfismus f pro funkce s derivací v prostoru funkcí invariantnímu vůči nerostoucímu přerovnání X blízko k Lq , t.j. X je q-škálující. 1
Properties of weakly differentiable functions and mappings
Kleprlík, Luděk ; Hencl, Stanislav (vedoucí práce) ; Kružík, Martin (oponent) ; Onninen, Jani (oponent)
V předložené práci studujeme optimální podmínky na homeomorfis- mus f : Ω → Rn , která nám zaručí, že složení u ◦ f je slabě diferenco- vatelné a slabá derivace patří do nějakého vhodného prostoru funkcí. Ukážeme, má-li f konečnou distorzi a q-distorze Kq = |Df|q /Jf je dostatečně integrovatelná, potom operátor složení Tf (u) = u ◦ f zo- brazuje funkce z W1,q loc do prostoru W1,p loc a navíc platí známé řetízkové pravidlo. Pro důkaz tohoto tvrzení budeme muset nejdříve zjistit, kdy inverzní zobrazení f−1 zobrazuje množiny nulové míry na množiny nulové míry (tj. splňuje Luzinovu (N−1 ) podmínku). Ukážeme op- timální podmínky pro Sobolev-Lorentzův prostor WLn,q a pro Sobolev Orliczův prostor WLq log L, kde q ≥ n a α > 0 nebo 1 < q ≤ n a α < 0. Nalezneme také nutnou podmínku na homeomorfismus f pro funkce s derivací v prostoru funkcí invariantnímu vůči nerostoucímu přerovnání X blízko k Lq , t.j. X je q-škálující. 1
Properties of weakly differentiable functions and mappings
Kleprlík, Luděk
V předložené práci studujeme optimální podmínky na homeomorfis- mus f : Ω → Rn , která nám zaručí, že složení u ◦ f je slabě diferenco- vatelné a slabá derivace patří do nějakého vhodného prostoru funkcí. Ukážeme, má-li f konečnou distorzi a q-distorze Kq = |Df|q /Jf je dostatečně integrovatelná, potom operátor složení Tf (u) = u ◦ f zo- brazuje funkce z W1,q loc do prostoru W1,p loc a navíc platí známé řetízkové pravidlo. Pro důkaz tohoto tvrzení budeme muset nejdříve zjistit, kdy inverzní zobrazení f−1 zobrazuje množiny nulové míry na množiny nulové míry (tj. splňuje Luzinovu (N−1 ) podmínku). Ukážeme op- timální podmínky pro Sobolev-Lorentzův prostor WLn,q a pro Sobolev Orliczův prostor WLq log L, kde q ≥ n a α > 0 nebo 1 < q ≤ n a α < 0. Nalezneme také nutnou podmínku na homeomorfismus f pro funkce s derivací v prostoru funkcí invariantnímu vůči nerostoucímu přerovnání X blízko k Lq , t.j. X je q-škálující. 1

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.